Goto

Collaborating Authors

 Jing, Dong


Bridging Writing Manner Gap in Visual Instruction Tuning by Creating LLM-aligned Instructions

arXiv.org Artificial Intelligence

In the realm of Large Multi-modal Models (LMMs), the instruction quality during the visual instruction tuning stage significantly influences the performance of modality alignment. In this paper, we assess the instruction quality from a unique perspective termed \textbf{Writing Manner}, which encompasses the selection of vocabulary, grammar and sentence structure to convey specific semantics. We argue that there exists a substantial writing manner gap between the visual instructions and the base Large Language Models (LLMs) within LMMs. This gap forces the pre-trained base LLMs to deviate from their original writing styles, leading to capability degradation of both base LLMs and LMMs. To bridge the writing manner gap while preserving the original semantics, we propose directly leveraging the base LLM to align the writing manner of soft-format visual instructions with that of the base LLM itself, resulting in novel LLM-aligned instructions. The manual writing manner evaluation results demonstrate that our approach successfully minimizes the writing manner gap. By utilizing LLM-aligned instructions, the baseline models LLaVA-7B and QwenVL demonstrate enhanced resistance to hallucinations and non-trivial comprehensive improvements across all $15$ visual and language benchmarks.


CoTBal: Comprehensive Task Balancing for Multi-Task Visual Instruction Tuning

arXiv.org Artificial Intelligence

Visual instruction tuning is a key training stage of large multimodal models (LMMs). Nevertheless, the common practice of indiscriminately mixing instruction-following data from various tasks may result in suboptimal overall performance due to different instruction formats and knowledge domains across tasks. To mitigate this issue, we propose a novel Comprehensive Task Balancing (CoTBal) algorithm for multi-task visual instruction tuning of LMMs. To our knowledge, this is the first work that explores multi-task optimization in visual instruction tuning. Specifically, we consider two key dimensions for task balancing: (1) Inter-Task Contribution, the phenomenon where learning one task potentially enhances the performance in other tasks, attributable to the overlapping knowledge domains, and (2) Intra-Task Difficulty, which refers to the learning difficulty within a single task. By quantifying these two dimensions with performance-based metrics, task balancing is thus enabled by assigning more weights to tasks that offer substantial contributions to others, receive minimal contributions from others, and also have great intra-task difficulties. Experiments show that our CoTBal leads to superior overall performance in multi-task visual instruction tuning.