Goto

Collaborating Authors

 Jin, Yueming


Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL

arXiv.org Artificial Intelligence

Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (\textbf{FedDAH}). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.


Instrument-Splatting: Controllable Photorealistic Reconstruction of Surgical Instruments Using Gaussian Splatting

arXiv.org Artificial Intelligence

Real2Sim is becoming increasingly important with the rapid development of surgical artificial intelligence (AI) and autonomy. In this work, we propose a novel Real2Sim methodology, Instrument-Splatting, that leverages 3D Gaussian Splatting to provide fully controllable 3D reconstruction of surgical instruments from monocular surgical videos. To maintain both high visual fidelity and manipulability, we introduce a geometry pre-training to bind Gaussian point clouds on part mesh with accurate geometric priors and define a forward kinematics to control the Gaussians as flexible as real instruments. Afterward, to handle unposed videos, we design a novel instrument pose tracking method leveraging semantics-embedded Gaussians to robustly refine per-frame instrument poses and joint states in a render-and-compare manner, which allows our instrument Gaussian to accurately learn textures and reach photorealistic rendering. We validated our method on 2 publicly released surgical videos and 4 videos collected on ex vivo tissues and green screens. Quantitative and qualitative evaluations demonstrate the effectiveness and superiority of the proposed method.


SurgRAW: Multi-Agent Workflow with Chain-of-Thought Reasoning for Surgical Intelligence

arXiv.org Artificial Intelligence

Integration of Vision-Language Models (VLMs) in surgical intelligence is hindered by hallucinations, domain knowledge gaps, and limited understanding of task interdependencies within surgical scenes, undermining clinical reliability. While recent VLMs demonstrate strong general reasoning and thinking capabilities, they still lack the domain expertise and task-awareness required for precise surgical scene interpretation. Although Chain-of-Thought (CoT) can structure reasoning more effectively, current approaches rely on self-generated CoT steps, which often exacerbate inherent domain gaps and hallucinations. To overcome this, we present SurgRAW, a CoT-driven multi-agent framework that delivers transparent, interpretable insights for most tasks in robotic-assisted surgery. By employing specialized CoT prompts across five tasks: instrument recognition, action recognition, action prediction, patient data extraction, and outcome assessment, SurgRAW mitigates hallucinations through structured, domain-aware reasoning. Retrieval-Augmented Generation (RAG) is also integrated to external medical knowledge to bridge domain gaps and improve response reliability. Most importantly, a hierarchical agentic system ensures that CoT-embedded VLM agents collaborate effectively while understanding task interdependencies, with a panel discussion mechanism promotes logical consistency. To evaluate our method, we introduce SurgCoTBench, the first reasoning-based dataset with structured frame-level annotations. With comprehensive experiments, we demonstrate the effectiveness of proposed SurgRAW with 29.32% accuracy improvement over baseline VLMs on 12 robotic procedures, achieving the state-of-the-art performance and advancing explainable, trustworthy, and autonomous surgical assistance.


Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos

arXiv.org Artificial Intelligence

Despite significant advancements in robotic systems and surgical data science, ensuring safe and optimal execution in robot-assisted minimally invasive surgery (RMIS) remains a complex challenge. Current surgical error detection methods involve two parts: identifying surgical gestures and then detecting errors within each gesture clip. These methods seldom consider the rich contextual and semantic information inherent in surgical videos, limiting their performance due to reliance on accurate gesture identification. Motivated by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Thought (COG) prompting, leveraging contextual information from surgical videos. This encompasses two reasoning modules designed to mimic the decision-making processes of expert surgeons. Concretely, we first design a Gestural-Visual Reasoning module, which utilizes transformer and attention architectures for gesture prompting, while the second, a Multi-Scale Temporal Reasoning module, employs a multi-stage temporal convolutional network with both slow and fast paths for temporal information extraction. We extensively validate our method on the public benchmark RMIS dataset JIGSAWS. Our method encapsulates the reasoning processes inherent to surgical activities enabling it to outperform the state-of-the-art by 4.6% in F1 score, 4.6% in Accuracy, and 5.9% in Jaccard index while processing each frame in 6.69 milliseconds on average, demonstrating the great potential of our approach in enhancing the safety and efficacy of RMIS procedures and surgical education. The code will be available.


An objective comparison of methods for augmented reality in laparoscopic liver resection by preoperative-to-intraoperative image fusion

arXiv.org Artificial Intelligence

Augmented reality for laparoscopic liver resection is a visualisation mode that allows a surgeon to localise tumours and vessels embedded within the liver by projecting them on top of a laparoscopic image. Preoperative 3D models extracted from CT or MRI data are registered to the intraoperative laparoscopic images during this process. In terms of 3D-2D fusion, most of the algorithms make use of anatomical landmarks to guide registration. These landmarks include the liver's inferior ridge, the falciform ligament, and the occluding contours. They are usually marked by hand in both the laparoscopic image and the 3D model, which is time-consuming and may contain errors if done by a non-experienced user. Therefore, there is a need to automate this process so that augmented reality can be used effectively in the operating room. We present the Preoperative-to-Intraoperative Laparoscopic Fusion Challenge (P2ILF), held during the Medical Imaging and Computer Assisted Interventions (MICCAI 2022) conference, which investigates the possibilities of detecting these landmarks automatically and using them in registration. The challenge was divided into two tasks: 1) A 2D and 3D landmark detection task and 2) a 3D-2D registration task. The teams were provided with training data consisting of 167 laparoscopic images and 9 preoperative 3D models from 9 patients, with the corresponding 2D and 3D landmark annotations. A total of 6 teams from 4 countries participated, whose proposed methods were evaluated on 16 images and two preoperative 3D models from two patients. All the teams proposed deep learning-based methods for the 2D and 3D landmark segmentation tasks and differentiable rendering-based methods for the registration task. Based on the experimental outcomes, we propose three key hypotheses that determine current limitations and future directions for research in this domain.


Biomedical image analysis competitions: The state of current participation practice

arXiv.org Artificial Intelligence

The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.


SurgT challenge: Benchmark of Soft-Tissue Trackers for Robotic Surgery

arXiv.org Artificial Intelligence

This paper introduces the ``SurgT: Surgical Tracking" challenge which was organised in conjunction with MICCAI 2022. There were two purposes for the creation of this challenge: (1) the establishment of the first standardised benchmark for the research community to assess soft-tissue trackers; and (2) to encourage the development of unsupervised deep learning methods, given the lack of annotated data in surgery. A dataset of 157 stereo endoscopic videos from 20 clinical cases, along with stereo camera calibration parameters, have been provided. Participants were assigned the task of developing algorithms to track the movement of soft tissues, represented by bounding boxes, in stereo endoscopic videos. At the end of the challenge, the developed methods were assessed on a previously hidden test subset. This assessment uses benchmarking metrics that were purposely developed for this challenge, to verify the efficacy of unsupervised deep learning algorithms in tracking soft-tissue. The metric used for ranking the methods was the Expected Average Overlap (EAO) score, which measures the average overlap between a tracker's and the ground truth bounding boxes. Coming first in the challenge was the deep learning submission by ICVS-2Ai with a superior EAO score of 0.617. This method employs ARFlow to estimate unsupervised dense optical flow from cropped images, using photometric and regularization losses. Second, Jmees with an EAO of 0.583, uses deep learning for surgical tool segmentation on top of a non-deep learning baseline method: CSRT. CSRT by itself scores a similar EAO of 0.563. The results from this challenge show that currently, non-deep learning methods are still competitive. The dataset and benchmarking tool created for this challenge have been made publicly available at https://surgt.grand-challenge.org/.


Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning

arXiv.org Artificial Intelligence

Moreover, when we tackle a K-progress by propagating the label information from way classification problem with a large K, the binary detectors labeled data to unlabeled data (Berthelot et al. 2019; Xu et al. are less robust to identify outliers from such a complex 2021; Wang et al. 2022b; Zheng et al. 2022). Despite the dataset that contains multi-class information (Carbonneau success, SSL methods are deeply rooted in the closed-set assumption et al. 2018). One advanced method, evidential deep learning that labeled data, unlabeled data and test data share (EDL) (Sensoy, Kaplan, and Kandemir 2018) can explicitly the same predefined label set. In reality (Yu et al. 2020), such quantify the classification uncertainty corresponding an assumption may not always hold as we can only accurately to the unknown class, by treating the network's output as evidence control the label set of labeled data, while unlabeled for parameterizing the Dirichlet distribution according and test data may include outliers that belong to the novel to subjective logic (Jรธsang 2016). Compared with Softmax classes that are not seen in labeled data.


Beyond the Snapshot: Brain Tokenized Graph Transformer for Longitudinal Brain Functional Connectome Embedding

arXiv.org Artificial Intelligence

Under the framework of network-based neurodegeneration, brain functional connectome (FC)-based Graph Neural Networks (GNN) have emerged as a valuable tool for the diagnosis and prognosis of neurodegenerative diseases such as Alzheimer's disease (AD). However, these models are tailored for brain FC at a single time point instead of characterizing FC trajectory. Discerning how FC evolves with disease progression, particularly at the predementia stages such as cognitively normal individuals with amyloid deposition or individuals with mild cognitive impairment (MCI), is crucial for delineating disease spreading patterns and developing effective strategies to slow down or even halt disease advancement. In this work, we proposed the first interpretable framework for brain FC trajectory embedding with application to neurodegenerative disease diagnosis and prognosis, namely Brain Tokenized Graph Transformer (Brain TokenGT). It consists of two modules: 1) Graph Invariant and Variant Embedding (GIVE) for generation of node and spatio-temporal edge embeddings, which were tokenized for downstream processing; 2) Brain Informed Graph Transformer Readout (BIGTR) which augments previous tokens with trainable type identifiers and non-trainable node identifiers and feeds them into a standard transformer encoder to readout. We conducted extensive experiments on two public longitudinal fMRI datasets of the AD continuum for three tasks, including differentiating MCI from controls, predicting dementia conversion in MCI, and classification of amyloid positive or negative cognitively normal individuals. Based on brain FC trajectory, the proposed Brain TokenGT approach outperformed all the other benchmark models and at the same time provided excellent interpretability. The code is available at https://github.com/ZijianD/Brain-TokenGT.git


Dynamic Interactive Relation Capturing via Scene Graph Learning for Robotic Surgical Report Generation

arXiv.org Artificial Intelligence

For robot-assisted surgery, an accurate surgical report reflects clinical operations during surgery and helps document entry tasks, post-operative analysis and follow-up treatment. It is a challenging task due to many complex and diverse interactions between instruments and tissues in the surgical scene. Although existing surgical report generation methods based on deep learning have achieved large success, they often ignore the interactive relation between tissues and instrumental tools, thereby degrading the report generation performance. This paper presents a neural network to boost surgical report generation by explicitly exploring the interactive relation between tissues and surgical instruments. We validate the effectiveness of our method on a widely-used robotic surgery benchmark dataset, and experimental results show that our network can significantly outperform existing state-of-the-art surgical report generation methods (e.g., 7.48% and 5.43% higher for BLEU-1 and ROUGE).