Goto

Collaborating Authors

 Jin, Xin


Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning

arXiv.org Artificial Intelligence

End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.


Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning

arXiv.org Artificial Intelligence

Training visual reinforcement learning (RL) in practical scenarios presents a significant challenge, $\textit{i.e.,}$ RL agents suffer from low sample efficiency in environments with variations. While various approaches have attempted to alleviate this issue by disentanglement representation learning, these methods usually start learning from scratch without prior knowledge of the world. This paper, in contrast, tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints. To enable effective cross-domain semantic knowledge transfer, we introduce an interpretable model-based RL framework, dubbed Disentangled World Models (DisWM). Specifically, we pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos. The disentanglement capability of the pretrained model is then transferred to the world model through latent distillation. For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model. During the adaptation phase, the incorporation of actions and rewards from online environment interactions enriches the diversity of the data, which in turn strengthens the disentangled representation learning. Experimental results validate the superiority of our approach on various benchmarks.


ULTHO: Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Hyperparameter optimization (HPO) is a billion-dollar problem in machine learning, which significantly impacts the training efficiency and model performance. However, achieving efficient and robust HPO in deep reinforcement learning (RL) is consistently challenging due to its high non-stationarity and computational cost. To tackle this problem, existing approaches attempt to adapt common HPO techniques (e.g., population-based training or Bayesian optimization) to the RL scenario. However, they remain sample-inefficient and computationally expensive, which cannot facilitate a wide range of applications. In this paper, we propose ULTHO, an ultra-lightweight yet powerful framework for fast HPO in deep RL within single runs. Specifically, we formulate the HPO process as a multi-armed bandit with clustered arms (MABC) and link it directly to long-term return optimization. ULTHO also provides a quantified and statistical perspective to filter the HPs efficiently. We test ULTHO on benchmarks including ALE, Procgen, MiniGrid, and PyBullet. Extensive experiments demonstrate that the ULTHO can achieve superior performance with simple architecture, contributing to the development of advanced and automated RL systems.


Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs

arXiv.org Artificial Intelligence

We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.


SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation

arXiv.org Artificial Intelligence

Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.


Adaptive Data Exploitation in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

We introduce ADEPT: Adaptive Data ExPloiTation, a simple yet powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL). Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms, optimizing data utilization while mitigating overfitting. Moreover, ADEPT can significantly reduce the computational overhead and accelerate a wide range of RL algorithms. We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet. Extensive simulation demonstrates that ADEPT can achieve superior performance with remarkable computational efficiency, offering a practical solution to data-efficient RL. Our code is available at https://github.com/yuanmingqi/ADEPT.


Deep Reinforcement Learning with Hybrid Intrinsic Reward Model

arXiv.org Artificial Intelligence

Intrinsic reward shaping has emerged as a prevalent approach to solving hard-exploration and sparse-rewards environments in reinforcement learning (RL). While single intrinsic rewards, such as curiosity-driven or novelty-based methods, have shown effectiveness, they often limit the diversity and efficiency of exploration. Moreover, the potential and principle of combining multiple intrinsic rewards remains insufficiently explored. To address this gap, we introduce HIRE (Hybrid Intrinsic REward), a flexible and elegant framework for creating hybrid intrinsic rewards through deliberate fusion strategies. With HIRE, we conduct a systematic analysis of the application of hybrid intrinsic rewards in both general and unsupervised RL across multiple benchmarks. Extensive experiments demonstrate that HIRE can significantly enhance exploration efficiency and diversity, as well as skill acquisition in complex and dynamic settings.


Distributed Task Allocation for Multi-Agent Systems: A Submodular Optimization Approach

arXiv.org Artificial Intelligence

This paper investigates dynamic task allocation for multi-agent systems (MASs) under resource constraints, with a focus on maximizing the global utility of agents while ensuring a conflict-free allocation of targets. We present a more adaptable submodular maximization framework for the MAS task allocation under resource constraints. Our proposed distributed greedy bundles algorithm (DGBA) is specifically designed to address communication limitations in MASs and provides rigorous approximation guarantees for submodular maximization under $q$-independent systems, with low computational complexity. Specifically, DGBA can generate a feasible task allocation policy within polynomial time complexity, significantly reducing space complexity compared to existing methods. To demonstrate practical viability of our approach, we apply DGBA to the scenario of active observation information acquisition within a micro-satellite constellation, transforming the NP-hard task allocation problem into a tractable submodular maximization problem under a $q$-independent system constraint. Our method not only provides a specific performance bound but also surpasses benchmark algorithms in metrics such as utility, cost, communication time, and running time.


MSSF: A 4D Radar and Camera Fusion Framework With Multi-Stage Sampling for 3D Object Detection in Autonomous Driving

arXiv.org Artificial Intelligence

As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.


Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation

arXiv.org Artificial Intelligence

Atrial fibrillation is a commonly encountered clinical arrhythmia associated with stroke and increased mortality. Since professional medical knowledge is required for annotation, exploiting a large corpus of ECGs to develop accurate supervised learning-based atrial fibrillation algorithms remains challenging. Self-supervised learning (SSL) is a promising recipe for generalized ECG representation learning, eliminating the dependence on expensive labeling. However, without well-designed incorporations of knowledge related to atrial fibrillation, existing SSL approaches typically suffer from unsatisfactory capture of robust ECG representations. In this paper, we propose an inter-intra period-aware ECG representation learning approach. Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations, aiming to learn the single-period stable morphology representation while retaining crucial interperiod features. After further fine-tuning, our approach demonstrates remarkable AUC performances on the BTCH dataset, \textit{i.e.}, 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection. On commonly used benchmarks of CinC2017 and CPSC2021, the generalization capability and effectiveness of our methodology are substantiated with competitive results.