Goto

Collaborating Authors

 Jin, Lu


Correctness Learning: Deductive Verification Guided Learning for Human-AI Collaboration

arXiv.org Artificial Intelligence

Despite significant progress in AI and decision-making technologies in safety-critical fields, challenges remain in verifying the correctness of decision output schemes and verification-result driven design. We propose correctness learning (CL) to enhance human-AI collaboration integrating deductive verification methods and insights from historical high-quality schemes. The typical pattern hidden in historical high-quality schemes, such as change of task priorities in shared resources, provides critical guidance for intelligent agents in learning and decision-making. By utilizing deductive verification methods, we proposed patten-driven correctness learning (PDCL), formally modeling and reasoning the adaptive behaviors-or 'correctness pattern'-of system agents based on historical high-quality schemes, capturing the logical relationships embedded within these schemes. Using this logical information as guidance, we establish a correctness judgment and feedback mechanism to steer the intelligent decision model toward the 'correctness pattern' reflected in historical high-quality schemes. Extensive experiments across multiple working conditions and core parameters validate the framework's components and demonstrate its effectiveness in improving decision-making and resource optimization.


PharmaGPT: Domain-Specific Large Language Models for Bio-Pharmaceutical and Chemistry

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmaGPT, a suite of domain specilized LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus tailored to the Bio-Pharmaceutical and Chemical domains. Our evaluation shows that PharmaGPT surpasses existing general models on specific-domain benchmarks such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. Remarkably, this performance is achieved with a model that has only a fraction, sometimes just one-tenth-of the parameters of general-purpose large models. This advancement establishes a new benchmark for LLMs in the bio-pharmaceutical and chemical fields, addressing the existing gap in specialized language modeling. It also suggests a promising path for enhanced research and development, paving the way for more precise and effective NLP applications in these areas.