Jin, Haolin
Towards Advancing Code Generation with Large Language Models: A Research Roadmap
Jin, Haolin, Chen, Huaming, Lu, Qinghua, Zhu, Liming
Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance
Jin, Haolin, Sun, Zechao, Chen, Huaming
Large Language Models (LLMs) have shown incredible potential in code generation tasks, and recent research in prompt engineering have enhanced LLMs' understanding of textual information. However, ensuring the accuracy of generated code often requires extensive testing and validation by programmers. While LLMs can typically generate code based on task descriptions, their accuracy remains limited, especially for complex tasks that require a deeper understanding of both the problem statement and the code generation process. This limitation is primarily due to the LLMs' need to simultaneously comprehend text and generate syntactically and semantically correct code, without having the capability to automatically refine the code. In real-world software development, programmers rarely produce flawless code in a single attempt based on the task description alone, they rely on iterative feedback and debugging to refine their programs. Inspired by this process, we introduce a novel architecture of LLM-based agents for code generation and automatic debugging: Refinement and Guidance Debugging (RGD). The RGD framework is a multi-LLM-based agent debugger that leverages three distinct LLM agents-Guide Agent, Debug Agent, and Feedback Agent. RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback. Experimental results demonstrate that RGD exhibits remarkable code generation capabilities, achieving state-of-the-art performance with a 9.8% improvement on the HumanEval dataset and a 16.2% improvement on the MBPP dataset compared to the state-of-the-art approaches and traditional direct prompting approaches. We highlight the effectiveness of the RGD framework in enhancing LLMs' ability to generate and refine code autonomously.