Jin, Claire
An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science
Zeng, Qiuhai, Jin, Claire, Wang, Xinyue, Zheng, Yuhan, Li, Qunhua
Large Language Models (LLMs) have demonstrated potential for data science tasks via code generation. However, the exploratory nature of data science, alongside the stochastic and opaque outputs of LLMs, raise concerns about their reliability. While prior work focuses on benchmarking LLM accuracy, reproducibility remains underexplored, despite being critical to establishing trust in LLM-driven analysis. We propose a novel analyst-inspector framework to automatically evaluate and enforce the reproducibility of LLM-generated data science workflows - the first rigorous approach to the best of our knowledge. Defining reproducibility as the sufficiency and completeness of workflows for reproducing functionally equivalent code, this framework enforces computational reproducibility principles, ensuring transparent, well-documented LLM workflows while minimizing reliance on implicit model assumptions. Using this framework, we systematically evaluate five state-of-the-art LLMs on 1,032 data analysis tasks across three diverse benchmark datasets. We also introduce two novel reproducibility-enhancing prompting strategies. Our results show that higher reproducibility strongly correlates with improved accuracy and reproducibility-enhancing prompts are effective, demonstrating structured prompting's potential to enhance automated data science workflows and enable transparent, robust AI-driven analysis. Our code is publicly available.
Player-Driven Emergence in LLM-Driven Game Narrative
Peng, Xiangyu, Quaye, Jessica, Rao, Sudha, Xu, Weijia, Botchway, Portia, Brockett, Chris, Jojic, Nebojsa, DesGarennes, Gabriel, Lobb, Ken, Xu, Michael, Leandro, Jorge, Jin, Claire, Dolan, Bill
We explore how interaction with large language models (LLMs) can give rise to emergent behaviors, empowering players to participate in the evolution of game narratives. Our testbed is a text-adventure game in which players attempt to solve a mystery under a fixed narrative premise, but can freely interact with non-player characters generated by GPT-4, a large language model. We recruit 28 gamers to play the game and use GPT-4 to automatically convert the game logs into a node-graph representing the narrative in the player's gameplay. We find that through their interactions with the non-deterministic behavior of the LLM, players are able to discover interesting new emergent nodes that were not a part of the original narrative but have potential for being fun and engaging. Players that created the most emergent nodes tended to be those that often enjoy games that facilitate discovery, exploration and experimentation.