Goto

Collaborating Authors

 Jin, Bowen


Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning

arXiv.org Artificial Intelligence

Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities during inference to use search engines is not optimal, since the LLM does not learn how to optimally interact with the search engine. This paper introduces Search-R1, an extension of the DeepSeek-R1 model where the LLM learns -- solely through reinforcement learning (RL) -- to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM rollouts with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 26% (Qwen2.5-7B), 21% (Qwen2.5-3B), and 10% (LLaMA3.2-3B) over strong baselines. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.


GRAPHGPT-O: Synergistic Multimodal Comprehension and Generation on Graphs

arXiv.org Artificial Intelligence

The rapid development of Multimodal Large Language Models (MLLMs) has enabled the integration of multiple modalities, including texts and images, within the large language model (LLM) framework. However, texts and images are usually interconnected, forming a multimodal attributed graph (MMAG). It is underexplored how MLLMs can incorporate the relational information (\textit{i.e.}, graph structure) and semantic information (\textit{i.e.,} texts and images) on such graphs for multimodal comprehension and generation. In this paper, we propose GraphGPT-o, which supports omni-multimodal understanding and creation on MMAGs. We first comprehensively study linearization variants to transform semantic and structural information as input for MLLMs. Then, we propose a hierarchical aligner that enables deep graph encoding, bridging the gap between MMAGs and MLLMs. Finally, we explore the inference choices, adapting MLLM to interleaved text and image generation in graph scenarios. Extensive experiments on three datasets from different domains demonstrate the effectiveness of our proposed method. Datasets and codes will be open-sourced upon acceptance.


Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation

arXiv.org Artificial Intelligence

In specialized fields like the scientific domain, constructing large-scale human-annotated datasets poses a significant challenge due to the need for domain expertise. Recent methods have employed large language models to generate synthetic queries, which serve as proxies for actual user queries. However, they lack control over the content generated, often resulting in incomplete coverage of academic concepts in documents. We introduce Concept Coverage-based Query set Generation (CCQGen) framework, designed to generate a set of queries with comprehensive coverage of the document's concepts. A key distinction of CCQGen is that it adaptively adjusts the generation process based on the previously generated queries. We identify concepts not sufficiently covered by previous queries, and leverage them as conditions for subsequent query generation. This approach guides each new query to complement the previous ones, aiding in a thorough understanding of the document. Extensive experiments demonstrate that CCQGen significantly enhances query quality and retrieval performance.


LLM Alignment as Retriever Optimization: An Information Retrieval Perspective

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized artificial intelligence with capabilities in reasoning, coding, and communication, driving innovation across industries. Their true potential depends on effective alignment to ensure correct, trustworthy and ethical behavior, addressing challenges like misinformation, hallucinations, bias and misuse. While existing Reinforcement Learning (RL)-based alignment methods are notoriously complex, direct optimization approaches offer a simpler alternative. In this work, we introduce a novel direct optimization approach for LLM alignment by drawing on established Information Retrieval (IR) principles. We present a systematic framework that bridges LLM alignment and IR methodologies, mapping LLM generation and reward models to IR's retriever-reranker paradigm. Building on this foundation, we propose LLM Alignment as Retriever Preference Optimization (LarPO), a new alignment method that enhances overall alignment quality. Extensive experiments validate LarPO's effectiveness with 38.9 % and 13.7 % averaged improvement on AlpacaEval2 and MixEval-Hard respectively. Our work opens new avenues for advancing LLM alignment by integrating IR foundations, offering a promising direction for future research.


Deep Learning and Foundation Models for Weather Prediction: A Survey

arXiv.org Artificial Intelligence

Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.


Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision?

arXiv.org Artificial Intelligence

While great success has been achieved in building vision models with Contrastive Language-Image Pre-training (CLIP) over internet-scale image-text pairs, building transferable Graph Neural Networks (GNNs) with CLIP pipeline is challenging because of three fundamental issues: the scarcity of labeled data and text supervision, different levels of downstream tasks, and the conceptual gaps between domains. In this work, to address these issues, we leverage multi-modal prompt learning to effectively adapt pre-trained GNN to downstream tasks and data, given only a few semantically labeled samples, each with extremely weak text supervision. Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously. To accomplish this, we improve state-of-the-art graph prompt method, and then propose the first graph-language multi-modal prompt learning approach for exploiting the knowledge in pre-trained models. Notably, due to the insufficient supervision for fine-tuning, in our paradigm, the pre-trained GNN and the LLM are kept frozen, so the learnable parameters are much fewer than fine-tuning any pre-trained model. Through extensive experiments on real-world datasets, we demonstrate the superior performance of our paradigm in few-shot, multi-task-level, and cross-domain settings. Moreover, we build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.


Grasping the Essentials: Tailoring Large Language Models for Zero-Shot Relation Extraction

arXiv.org Artificial Intelligence

Relation extraction (RE) aims to identify semantic relationships between entities within text. Despite considerable advancements, existing models predominantly require extensive annotated training data, which is both costly and labor-intensive to collect. Moreover, these models often struggle to adapt to new or unseen relations. Few-shot learning, aiming to lessen annotation demands, typically provides incomplete and biased supervision for target relations, leading to degraded and unstable performance. To accurately and explicitly describe relation semantics while minimizing annotation demands, we explore the definition only zero-shot RE setting where only relation definitions expressed in natural language are used to train a RE model. We introduce REPaL, comprising three stages: (1) We leverage large language models (LLMs) to generate initial seed instances from relation definitions and an unlabeled corpus. (2) We fine-tune a bidirectional Small Language Model (SLM) with initial seeds to learn relations for the target domain. (3) We expand pattern coverage and mitigate bias from initial seeds by integrating feedback from the SLM's predictions on the unlabeled corpus and the synthesis history. To accomplish this, we leverage the multi-turn conversation ability of LLMs to generate new instances in follow-up dialogues, informed by both the feedback and synthesis history. Studies reveal that definition-oriented seed synthesis enhances pattern coverage whereas indiscriminately increasing seed quantity leads to performance saturation. Experiments on two datasets show REPaL significantly improved cost-effective zero-shot performance by large margins.


InstructG2I: Synthesizing Images from Multimodal Attributed Graphs

arXiv.org Artificial Intelligence

In this paper, we approach an overlooked yet critical task Graph2Image: generating images from multimodal attributed graphs (MMAGs). This task poses significant challenges due to the explosion in graph size, dependencies among graph entities, and the need for controllability in graph conditions. To address these challenges, we propose a graph context-conditioned diffusion model called InstructG2I. InstructG2I first exploits the graph structure and multimodal information to conduct informative neighbor sampling by combining personalized page rank and re-ranking based on vision-language features. Then, a Graph-QFormer encoder adaptively encodes the graph nodes into an auxiliary set of graph prompts to guide the denoising process of diffusion. Finally, we propose graph classifier-free guidance, enabling controllable generation by varying the strength of graph guidance and multiple connected edges to a node. Extensive experiments conducted on three datasets from different domains demonstrate the effectiveness and controllability of our approach. The code is available at https://github.com/PeterGriffinJin/InstructG2I.


Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources. The increasing capacity of LLMs to process longer input sequences opens up avenues for providing more retrieved information, to potentially enhance the quality of generated outputs. It is plausible to assume that a larger retrieval set would contain more relevant information (higher recall), that might result in improved performance. However, our empirical findings demonstrate that for many long-context LLMs, the quality of generated output initially improves first, but then subsequently declines as the number of retrieved passages increases. This paper investigates this phenomenon, identifying the detrimental impact of retrieved "hard negatives" as a key contributor. To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches. We first showcase the effectiveness of retrieval reordering as a simple yet powerful training-free optimization. Furthermore, we explore training-based methods, specifically RAG-specific implicit LLM fine-tuning and RAG-oriented fine-tuning with intermediate reasoning, demonstrating their capacity for substantial performance gains. Finally, we conduct a systematic analysis of design choices for these training-based methods, including data distribution, retriever selection, and training context length.


A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery

arXiv.org Artificial Intelligence

In many scientific fields, large language models (LLMs) have revolutionized the way with which text and other modalities of data (e.g., molecules and proteins) are dealt, achieving superior performance in various applications and augmenting the scientific discovery process. Nevertheless, previous surveys on scientific LLMs often concentrate on one to two fields or a single modality. In this paper, we aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs regarding their architectures and pre-training techniques. To this end, we comprehensively survey over 250 scientific LLMs, discuss their commonalities and differences, as well as summarize pre-training datasets and evaluation tasks for each field and modality. Moreover, we investigate how LLMs have been deployed to benefit scientific discovery. Resources related to this survey are available at https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models.