Jiang, Zutao
Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs
Yun, Sukmin, Lin, Haokun, Thushara, Rusiru, Bhat, Mohammad Qazim, Wang, Yongxin, Jiang, Zutao, Deng, Mingkai, Wang, Jinhong, Tao, Tianhua, Li, Junbo, Li, Haonan, Nakov, Preslav, Baldwin, Timothy, Liu, Zhengzhong, Xing, Eric P., Liang, Xiaodan, Shen, Zhiqiang
Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at https://github.com/MBZUAI-LLM/web2code.
RealignDiff: Boosting Text-to-Image Diffusion Model with Coarse-to-fine Semantic Re-alignment
Fang, Guian, Jiang, Zutao, Han, Jianhua, Lu, Guansong, Xu, Hang, Liao, Shengcai, Liang, Xiaodan
Recent advances in text-to-image diffusion models have achieved remarkable success in generating high-quality, realistic images from textual descriptions. However, these approaches have faced challenges in precisely aligning the generated visual content with the textual concepts described in the prompts. In this paper, we propose a two-stage coarse-to-fine semantic re-alignment method, named RealignDiff, aimed at improving the alignment between text and images in text-to-image diffusion models. In the coarse semantic re-alignment phase, a novel caption reward, leveraging the BLIP-2 model, is proposed to evaluate the semantic discrepancy between the generated image caption and the given text prompt. Subsequently, the fine semantic re-alignment stage employs a local dense caption generation module and a re-weighting attention modulation module to refine the previously generated images from a local semantic view. Experimental results on the MS-COCO benchmark demonstrate that the proposed two-stage coarse-to-fine semantic re-alignment method outperforms other baseline re-alignment techniques by a substantial margin in both visual quality and semantic similarity with the input prompt.
3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation
Jiang, Zutao, Lu, Guansong, Liang, Xiaodan, Zhu, Jihua, Zhang, Wei, Chang, Xiaojun, Xu, Hang
Text-guided 3D object generation aims to generate 3D objects described by user-defined captions, which paves a flexible way to visualize what we imagined. Although some works have been devoted to solving this challenging task, these works either utilize some explicit 3D representations (e.g., mesh), which lack texture and require post-processing for rendering photo-realistic views; or require individual time-consuming optimization for every single case. Here, we make the first attempt to achieve generic text-guided cross-category 3D object generation via a new 3D-TOGO model, which integrates a text-to-views generation module and a views-to-3D generation module. The text-to-views generation module is designed to generate different views of the target 3D object given an input caption. prior-guidance, caption-guidance and view contrastive learning are proposed for achieving better view-consistency and caption similarity. Meanwhile, a pixelNeRF model is adopted for the views-to-3D generation module to obtain the implicit 3D neural representation from the previously-generated views. Our 3D-TOGO model generates 3D objects in the form of the neural radiance field with good texture and requires no time-cost optimization for every single caption. Besides, 3D-TOGO can control the category, color and shape of generated 3D objects with the input caption. Extensive experiments on the largest 3D object dataset (i.e., ABO) are conducted to verify that 3D-TOGO can better generate high-quality 3D objects according to the input captions across 98 different categories, in terms of PSNR, SSIM, LPIPS and CLIP-score, compared with text-NeRF and Dreamfields.
Simultaneous merging multiple grid maps using the robust motion averaging
Jiang, Zutao, Zhu, Jihua, Li, Yaochen, Li, Zhongyu, Lu, Huimin
Mapping in the GPS-denied environment is an important and challenging task in the field of robotics. In the large environment, mapping can be significantly accelerated by multiple robots exploring different parts of the environment. Accordingly, a key problem is how to integrate these local maps built by different robots into a single global map. In this paper, we propose an approach for simultaneous merging of multiple grid maps by the robust motion averaging. The main idea of this approach is to recover all global motions for map merging from a set of relative motions. Therefore, it firstly adopts the pair-wise map merging method to estimate relative motions for grid map pairs. To obtain as many reliable relative motions as possible, a graph-based sampling scheme is utilized to efficiently remove unreliable relative motions obtained from the pair-wise map merging. Subsequently, the accurate global motions can be recovered from the set of reliable relative motions by the motion averaging. Experimental results carried on real robot data sets demonstrate that proposed approach can achieve simultaneous merging of multiple grid maps with good performances.