Not enough data to create a plot.
Try a different view from the menu above.
Jiang, Zhifan
Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration
Parida, Abhijeet, Alomar, Antonia, Jiang, Zhifan, Roshanitabrizi, Pooneh, Tapp, Austin, Ledesma-Carbayo, Maria, Xu, Ziyue, Anwar, Syed Muhammed, Linguraru, Marius George, Roth, Holger R.
Deploying deep learning-based imaging tools across various clinical sites poses significant challenges due to inherent domain shifts and regulatory hurdles associated with site-specific fine-tuning. For histopathology, stain normalization techniques can mitigate discrepancies, but they often fall short of eliminating inter-site variations. Therefore, we present Data Alchemy, an explainable stain normalization method combined with test time data calibration via a template learning framework to overcome barriers in cross-site analysis. Data Alchemy handles shifts inherent to multi-site data and minimizes them without needing to change the weights of the normalization or classifier networks. Our approach extends to unseen sites in various clinical settings where data domain discrepancies are unknown. Extensive experiments highlight the efficacy of our framework in tumor classification in hematoxylin and eosin-stained patches. Our explainable normalization method boosts classification tasks' area under the precision-recall curve (AUPR) by 0.165, 0.545 to 0.710. Additionally, Data Alchemy further reduces the multisite classification domain gap, by improving the 0.710 AUPR an additional 0.142, elevating classification performance further to 0.852, from 0.545. Our Data Alchemy framework can popularize precision medicine with minimal operational overhead by allowing for the seamless integration of pre-trained deep learning-based clinical tools across multiple sites.
D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions
Nisar, Hareem, Anwar, Syed Muhammad, Jiang, Zhifan, Parida, Abhijeet, Nath, Vishwesh, Roth, Holger R., Linguraru, Marius George
Large vision language models (VLMs) have progressed incredibly from research to applicability for general-purpose use cases. LLaVA-Med, a pioneering large language and vision assistant for biomedicine, can perform multi-modal biomedical image and data analysis to provide a natural language interface for radiologists. While it is highly generalizable and works with multi-modal data, it is currently limited by well-known challenges that exist in the large language model space. Hallucinations and imprecision in responses can lead to misdiagnosis which currently hinder the clinical adaptability of VLMs. To create precise, user-friendly models in healthcare, we propose D-Rax -- a domain-specific, conversational, radiologic assistance tool that can be used to gain insights about a particular radiologic image. In this study, we enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting, offering comprehensive insights from medical imaging and aiding in the formulation of accurate diagnosis. D-Rax is achieved by fine-tuning the LLaVA-Med architecture on our curated enhanced instruction-following data, comprising of images, instructions, as well as disease diagnosis and demographic predictions derived from MIMIC-CXR imaging data, CXR-related visual question answer (VQA) pairs, and predictive outcomes from multiple expert AI models. We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations. Leveraging the power of state-of-the-art diagnostic models combined with VLMs, D-Rax empowers clinicians to interact with medical images using natural language, which could potentially streamline their decision-making process, enhance diagnostic accuracy, and conserve their time.
Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge
LaBella, Dominic, Baid, Ujjwal, Khanna, Omaditya, McBurney-Lin, Shan, McLean, Ryan, Nedelec, Pierre, Rashid, Arif, Tahon, Nourel Hoda, Altes, Talissa, Bhalerao, Radhika, Dhemesh, Yaseen, Godfrey, Devon, Hilal, Fathi, Floyd, Scott, Janas, Anastasia, Kazerooni, Anahita Fathi, Kirkpatrick, John, Kent, Collin, Kofler, Florian, Leu, Kevin, Maleki, Nazanin, Menze, Bjoern, Pajot, Maxence, Reitman, Zachary J., Rudie, Jeffrey D., Saluja, Rachit, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Adewole, Maruf, Albrecht, Jake, Anazodo, Udunna, Anwar, Syed Muhammad, Bergquist, Timothy, Chen, Sully Francis, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Khalili, Nastaran, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Van Leemput, Koen, Li, Hongwei Bran, Linguraru, Marius George, Liu, Xinyang, Mahtabfar, Aria, Meier, Zeke, Moawad, Ahmed W., Mongan, John, Piraud, Marie, Shinohara, Russell Takeshi, Wiggins, Walter F., Abayazeed, Aly H., Akinola, Rachel, Jakab, Andrรกs, Bilello, Michel, de Verdier, Maria Correia, Crivellaro, Priscila, Davatzikos, Christos, Farahani, Keyvan, Freymann, John, Hess, Christopher, Huang, Raymond, Lohmann, Philipp, Moassefi, Mana, Pease, Matthew W., Vollmuth, Phillipp, Sollmann, Nico, Diffley, David, Nandolia, Khanak K., Warren, Daniel I., Hussain, Ali, Fehringer, Pascal, Bronstein, Yulia, Deptula, Lisa, Stein, Evan G., Taherzadeh, Mahsa, de Oliveira, Eduardo Portela, Haughey, Aoife, Kontzialis, Marinos, Saba, Luca, Turner, Benjamin, Brรผรeler, Melanie M. T., Ansari, Shehbaz, Gkampenis, Athanasios, Weiss, David Maximilian, Mansour, Aya, Shawali, Islam H., Yordanov, Nikolay, Stein, Joel M., Hourani, Roula, Moshebah, Mohammed Yahya, Abouelatta, Ahmed Magdy, Rizvi, Tanvir, Willms, Klara, Martin, Dann C., Okar, Abdullah, D'Anna, Gennaro, Taha, Ahmed, Sharifi, Yasaman, Faghani, Shahriar, Kite, Dominic, Pinho, Marco, Haider, Muhammad Ammar, Aristizabal, Alejandro, Karargyris, Alexandros, Kassem, Hasan, Pati, Sarthak, Sheller, Micah, Alonso-Basanta, Michelle, Villanueva-Meyer, Javier, Rauschecker, Andreas M., Nada, Ayman, Aboian, Mariam, Flanders, Adam E., Wiestler, Benedikt, Bakas, Spyridon, Calabrese, Evan
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, T2/FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
Unifying Invariance and Spuriousity for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Chen, Xuexin, Cai, Ruichu, Zheng, Kaitao, Jiang, Zhifan, Huang, Zhengting, Hao, Zhifeng, Li, Zijian
Graph Out-of-Distribution (OOD), requiring that models trained on biased data generalize to the unseen test data, has a massive of real-world applications. One of the most mainstream methods is to extract the invariant subgraph by aligning the original and augmented data with the help of environment augmentation. However, these solutions might lead to the loss or redundancy of semantic subgraph and further result in suboptimal generalization. To address this challenge, we propose a unified framework to exploit the Probability of Necessity and Sufficiency to extract the Invariant Substructure (PNSIS). Beyond that, this framework further leverages the spurious subgraph to boost the generalization performance in an ensemble manner to enhance the robustness on the noise data. Specificially, we first consider the data generation process for graph data. Under mild conditions, we show that the invariant subgraph can be extracted by minimizing an upper bound, which is built on the theoretical advance of probability of necessity and sufficiency. To further bridge the theory and algorithm, we devise the PNSIS model, which involves an invariant subgraph extractor for invariant graph learning as well invariant and spurious subgraph classifiers for generalization enhancement. Experimental results demonstrate that our \textbf{PNSIS} model outperforms the state-of-the-art techniques on graph OOD on several benchmarks, highlighting the effectiveness in real-world scenarios.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Kazerooni, Anahita Fathi, Khalili, Nastaran, Liu, Xinyang, Haldar, Debanjan, Jiang, Zhifan, Anwar, Syed Muhammed, Albrecht, Jake, Adewole, Maruf, Anazodo, Udunna, Anderson, Hannah, Bagheri, Sina, Baid, Ujjwal, Bergquist, Timothy, Borja, Austin J., Calabrese, Evan, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Familiar, Ariana, Farahani, Keyvan, Haldar, Shuvanjan, Iglesias, Juan Eugenio, Janas, Anastasia, Johansen, Elaine, Jones, Blaise V, Kofler, Florian, LaBella, Dominic, Lai, Hollie Anne, Van Leemput, Koen, Li, Hongwei Bran, Maleki, Nazanin, McAllister, Aaron S, Meier, Zeke, Menze, Bjoern, Moawad, Ahmed W, Nandolia, Khanak K, Pavaine, Julija, Piraud, Marie, Poussaint, Tina, Prabhu, Sanjay P, Reitman, Zachary, Rodriguez, Andres, Rudie, Jeffrey D, Shaikh, Ibraheem Salman, Shah, Lubdha M., Sheth, Nakul, Shinohara, Russel Taki, Tu, Wenxin, Viswanathan, Karthik, Wang, Chunhao, Ware, Jeffrey B, Wiestler, Benedikt, Wiggins, Walter, Zapaishchykova, Anna, Aboian, Mariam, Bornhorst, Miriam, de Blank, Peter, Deutsch, Michelle, Fouladi, Maryam, Hoffman, Lindsey, Kann, Benjamin, Lazow, Margot, Mikael, Leonie, Nabavizadeh, Ali, Packer, Roger, Resnick, Adam, Rood, Brian, Vossough, Arastoo, Bakas, Spyridon, Linguraru, Marius George
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.
Biomedical image analysis competitions: The state of current participation practice
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Godau, Patrick, Cheplygina, Veronika, Kozubek, Michal, Ali, Sharib, Gupta, Anubha, Kybic, Jan, Noble, Alison, de Solรณrzano, Carlos Ortiz, Pachade, Samiksha, Petitjean, Caroline, Sage, Daniel, Wei, Donglai, Wilden, Elizabeth, Alapatt, Deepak, Andrearczyk, Vincent, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bawa, Vivek Singh, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Choi, Jinwook, Commowick, Olivier, Daum, Marie, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Eichhorn, Hannah, Engelhardt, Sandy, Ganz, Melanie, Girard, Gabriel, Hansen, Lasse, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmรฉ, Arnaud, Kim, Hyunjeong, Landman, Bennett, Li, Hongwei Bran, Li, Jianning, Ma, Jun, Martel, Anne, Martรญn-Isla, Carlos, Menze, Bjoern, Nwoye, Chinedu Innocent, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Sudre, Carole, van Wijnen, Kimberlin, Vardazaryan, Armine, Vercauteren, Tom, Wagner, Martin, Wang, Chuanbo, Yap, Moi Hoon, Yu, Zeyun, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Bao, Rina, Choi, Chanyeol, Cohen, Andrew, Dzyubachyk, Oleh, Galdran, Adrian, Gan, Tianyuan, Guo, Tianqi, Gupta, Pradyumna, Haithami, Mahmood, Ho, Edward, Jang, Ikbeom, Li, Zhili, Luo, Zhengbo, Lux, Filip, Makrogiannis, Sokratis, Mรผller, Dominik, Oh, Young-tack, Pang, Subeen, Pape, Constantin, Polat, Gorkem, Reed, Charlotte Rosalie, Ryu, Kanghyun, Scherr, Tim, Thambawita, Vajira, Wang, Haoyu, Wang, Xinliang, Xu, Kele, Yeh, Hung, Yeo, Doyeob, Yuan, Yixuan, Zeng, Yan, Zhao, Xin, Abbing, Julian, Adam, Jannes, Adluru, Nagesh, Agethen, Niklas, Ahmed, Salman, Khalil, Yasmina Al, Alenyร , Mireia, Alhoniemi, Esa, An, Chengyang, Anwar, Talha, Arega, Tewodros Weldebirhan, Avisdris, Netanell, Aydogan, Dogu Baran, Bai, Yingbin, Calisto, Maria Baldeon, Basaran, Berke Doga, Beetz, Marcel, Bian, Cheng, Bian, Hao, Blansit, Kevin, Bloch, Louise, Bohnsack, Robert, Bosticardo, Sara, Breen, Jack, Brudfors, Mikael, Brรผngel, Raphael, Cabezas, Mariano, Cacciola, Alberto, Chen, Zhiwei, Chen, Yucong, Chen, Daniel Tianming, Cho, Minjeong, Choi, Min-Kook, Xie, Chuantao Xie Chuantao, Cobzas, Dana, Cohen-Adad, Julien, Acero, Jorge Corral, Das, Sujit Kumar, de Oliveira, Marcela, Deng, Hanqiu, Dong, Guiming, Doorenbos, Lars, Efird, Cory, Escalera, Sergio, Fan, Di, Serj, Mehdi Fatan, Fenneteau, Alexandre, Fidon, Lucas, Filipiak, Patryk, Finzel, Renรฉ, Freitas, Nuno R., Friedrich, Christoph M., Fulton, Mitchell, Gaida, Finn, Galati, Francesco, Galazis, Christoforos, Gan, Chang Hee, Gao, Zheyao, Gao, Shengbo, Gazda, Matej, Gerats, Beerend, Getty, Neil, Gibicar, Adam, Gifford, Ryan, Gohil, Sajan, Grammatikopoulou, Maria, Grzech, Daniel, Gรผley, Orhun, Gรผnnemann, Timo, Guo, Chunxu, Guy, Sylvain, Ha, Heonjin, Han, Luyi, Han, Il Song, Hatamizadeh, Ali, He, Tian, Heo, Jimin, Hitziger, Sebastian, Hong, SeulGi, Hong, SeungBum, Huang, Rian, Huang, Ziyan, Huellebrand, Markus, Huschauer, Stephan, Hussain, Mustaffa, Inubushi, Tomoo, Polat, Ece Isik, Jafaritadi, Mojtaba, Jeong, SeongHun, Jian, Bailiang, Jiang, Yuanhong, Jiang, Zhifan, Jin, Yueming, Joshi, Smriti, Kadkhodamohammadi, Abdolrahim, Kamraoui, Reda Abdellah, Kang, Inha, Kang, Junghwa, Karimi, Davood, Khademi, April, Khan, Muhammad Irfan, Khan, Suleiman A., Khantwal, Rishab, Kim, Kwang-Ju, Kline, Timothy, Kondo, Satoshi, Kontio, Elina, Krenzer, Adrian, Kroviakov, Artem, Kuijf, Hugo, Kumar, Satyadwyoom, La Rosa, Francesco, Lad, Abhi, Lee, Doohee, Lee, Minho, Lena, Chiara, Li, Hao, Li, Ling, Li, Xingyu, Liao, Fuyuan, Liao, KuanLun, Oliveira, Arlindo Limede, Lin, Chaonan, Lin, Shan, Linardos, Akis, Linguraru, Marius George, Liu, Han, Liu, Tao, Liu, Di, Liu, Yanling, Lourenรงo-Silva, Joรฃo, Lu, Jingpei, Lu, Jiangshan, Luengo, Imanol, Lund, Christina B., Luu, Huan Minh, Lv, Yi, Lv, Yi, Macar, Uzay, Maechler, Leon, L., Sina Mansour, Marshall, Kenji, Mazher, Moona, McKinley, Richard, Medela, Alfonso, Meissen, Felix, Meng, Mingyuan, Miller, Dylan, Mirjahanmardi, Seyed Hossein, Mishra, Arnab, Mitha, Samir, Mohy-ud-Din, Hassan, Mok, Tony Chi Wing, Murugesan, Gowtham Krishnan, Karthik, Enamundram Naga, Nalawade, Sahil, Nalepa, Jakub, Naser, Mohamed, Nateghi, Ramin, Naveed, Hammad, Nguyen, Quang-Minh, Quoc, Cuong Nguyen, Nichyporuk, Brennan, Oliveira, Bruno, Owen, David, Pal, Jimut Bahan, Pan, Junwen, Pan, Wentao, Pang, Winnie, Park, Bogyu, Pawar, Vivek, Pawar, Kamlesh, Peven, Michael, Philipp, Lena, Pieciak, Tomasz, Plotka, Szymon, Plutat, Marcel, Pourakpour, Fattaneh, Preloลพnik, Domen, Punithakumar, Kumaradevan, Qayyum, Abdul, Queirรณs, Sandro, Rahmim, Arman, Razavi, Salar, Ren, Jintao, Rezaei, Mina, Rico, Jonathan Adam, Rieu, ZunHyan, Rink, Markus, Roth, Johannes, Ruiz-Gonzalez, Yusely, Saeed, Numan, Saha, Anindo, Salem, Mostafa, Sanchez-Matilla, Ricardo, Schilling, Kurt, Shao, Wei, Shen, Zhiqiang, Shi, Ruize, Shi, Pengcheng, Sobotka, Daniel, Soulier, Thรฉodore, Fadida, Bella Specktor, Stoyanov, Danail, Mun, Timothy Sum Hon, Sun, Xiaowu, Tao, Rong, Thaler, Franz, Thรฉberge, Antoine, Thielke, Felix, Torres, Helena, Wahid, Kareem A., Wang, Jiacheng, Wang, YiFei, Wang, Wei, Wang, Xiong, Wen, Jianhui, Wen, Ning, Wodzinski, Marek, Wu, Ye, Xia, Fangfang, Xiang, Tianqi, Xiaofei, Chen, Xu, Lizhan, Xue, Tingting, Yang, Yuxuan, Yang, Lin, Yao, Kai, Yao, Huifeng, Yazdani, Amirsaeed, Yip, Michael, Yoo, Hwanseung, Yousefirizi, Fereshteh, Yu, Shunkai, Yu, Lei, Zamora, Jonathan, Zeineldin, Ramy Ashraf, Zeng, Dewen, Zhang, Jianpeng, Zhang, Bokai, Zhang, Jiapeng, Zhang, Fan, Zhang, Huahong, Zhao, Zhongchen, Zhao, Zixuan, Zhao, Jiachen, Zhao, Can, Zheng, Qingshuo, Zhi, Yuheng, Zhou, Ziqi, Zou, Baosheng, Maier-Hein, Klaus, Jรคger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
Harmonization Across Imaging Locations(HAIL): One-Shot Learning for Brain MRI
Parida, Abhijeet, Jiang, Zhifan, Anwar, Syed Muhammad, Foreman, Nicholas, Stence, Nicholas, Fisher, Michael J., Packer, Roger J., Avery, Robert A., Linguraru, Marius George
For machine learning-based prognosis and diagnosis of rare diseases, such as pediatric brain tumors, it is necessary to gather medical imaging data from multiple clinical sites that may use different devices and protocols. Deep learning-driven harmonization of radiologic images relies on generative adversarial networks (GANs). However, GANs notoriously generate pseudo structures that do not exist in the original training data, a phenomenon known as "hallucination". To prevent hallucination in medical imaging, such as magnetic resonance images (MRI) of the brain, we propose a one-shot learning method where we utilize neural style transfer for harmonization. At test time, the method uses one image from a clinical site to generate an image that matches the intensity scale of the collaborating sites. Our approach combines learning a feature extractor, neural style transfer, and adaptive instance normalization. We further propose a novel strategy to evaluate the effectiveness of image harmonization approaches with evaluation metrics that both measure image style harmonization and assess the preservation of anatomical structures. Experimental results demonstrate the effectiveness of our method in preserving patient anatomy while adjusting the image intensities to a new clinical site. Our general harmonization model can be used on unseen data from new sites, making it a valuable tool for real-world medical applications and clinical trials.
The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Kofler, Florian, Meissen, Felix, Steinbauer, Felix, Graf, Robert, Oswald, Eva, de da Rosa, Ezequiel, Li, Hongwei Bran, Baid, Ujjwal, Hoelzl, Florian, Turgut, Oezguen, Horvath, Izabela, Waldmannstetter, Diana, Bukas, Christina, Adewole, Maruf, Anwar, Syed Muhammad, Janas, Anastasia, Kazerooni, Anahita Fathi, LaBella, Dominic, Moawad, Ahmed W, Farahani, Keyvan, Eddy, James, Bergquist, Timothy, Chung, Verena, Shinohara, Russell Takeshi, Dako, Farouk, Wiggins, Walter, Reitman, Zachary, Wang, Chunhao, Liu, Xinyang, Jiang, Zhifan, Familiar, Ariana, Conte, Gian-Marco, Johanson, Elaine, Meier, Zeke, Davatzikos, Christos, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan M, Wiest, Roland, Kirschke, Jan, Colen, Rivka R, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andrรฉ, Mahajan, Abhishek, Mohan, Suyash, Mongan, John, Hess, Christopher, Cha, Soonmee, Villanueva-Meyer, Javier, Colak, Errol, Crivellaro, Priscila, Jakab, Andras, Albrecht, Jake, Anazodo, Udunna, Aboian, Mariam, Iglesias, Juan Eugenio, Van Leemput, Koen, Bakas, Spyridon, Rueckert, Daniel, Wiestler, Benedikt, Ezhov, Ivan, Piraud, Marie, Menze, Bjoern
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.
The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma
LaBella, Dominic, Adewole, Maruf, Alonso-Basanta, Michelle, Altes, Talissa, Anwar, Syed Muhammad, Baid, Ujjwal, Bergquist, Timothy, Bhalerao, Radhika, Chen, Sully, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Godfrey, Devon, Hilal, Fathi, Familiar, Ariana, Farahani, Keyvan, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Kazerooni, Anahita Fathi, Kent, Collin, Kirkpatrick, John, Kofler, Florian, Van Leemput, Koen, Li, Hongwei Bran, Liu, Xinyang, Mahtabfar, Aria, McBurney-Lin, Shan, McLean, Ryan, Meier, Zeke, Moawad, Ahmed W, Mongan, John, Nedelec, Pierre, Pajot, Maxence, Piraud, Marie, Rashid, Arif, Reitman, Zachary, Shinohara, Russell Takeshi, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Wiggins, Walter, Aboian, Mariam, Albrecht, Jake, Anazodo, Udunna, Bakas, Spyridon, Flanders, Adam, Janas, Anastasia, Khanna, Goldey, Linguraru, Marius George, Menze, Bjoern, Nada, Ayman, Rauschecker, Andreas M, Rudie, Jeff, Tahon, Nourel Hoda, Villanueva-Meyer, Javier, Wiestler, Benedikt, Calabrese, Evan
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.