Goto

Collaborating Authors

 Jiang, Yuhang


Relation Extraction with Instance-Adapted Predicate Descriptions

arXiv.org Artificial Intelligence

Relation extraction (RE) is a standard information extraction task playing a major role in downstream applications such as knowledge discovery and question answering. Although decoder-only large language models are excelling in generative tasks, smaller encoder models are still the go to architecture for RE. In this paper, we revisit fine-tuning such smaller models using a novel dual-encoder architecture with a joint contrastive and cross-entropy loss. Unlike previous methods that employ a fixed linear layer for predicate representations, our approach uses a second encoder to compute instance-specific predicate representations by infusing them with real entity spans from corresponding input instances. We conducted experiments on two biomedical RE datasets and two general domain datasets. Our approach achieved F1 score improvements ranging from 1% to 2% over state-of-the-art methods with a simple but elegant formulation. Ablation studies justify the importance of various components built into the proposed architecture.


Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) often encounters delayed and sparse feedback in real-world applications, even with only episodic rewards. Previous approaches have made some progress in reward redistribution for credit assignment but still face challenges, including training difficulties due to redundancy and ambiguous attributions stemming from overlooking the multifaceted nature of mission performance evaluation. Hopefully, Large Language Model (LLM) encompasses fruitful decision-making knowledge and provides a plausible tool for reward redistribution. Even so, deploying LLM in this case is non-trivial due to the misalignment between linguistic knowledge and the symbolic form requirement, together with inherent randomness and hallucinations in inference. To tackle these issues, we introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework, to improve credit assignment. Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation, enabling more interpretable goal attainment from various perspectives and facilitating more effective reward redistribution. We examine that semantically generated code from LLM can bridge linguistic knowledge and symbolic latent rewards, as it is executable for symbolic objects. Meanwhile, we design latent reward self-verification to increase the stability and reliability of LLM inference. Theoretically, reward-irrelevant redundancy elimination in the latent reward benefits RL performance from more accurate reward estimation. Extensive experimental results witness that LaRe (i) achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.


Can ChatGPT Overcome Behavioral Biases in the Financial Sector? Classify-and-Rethink: Multi-Step Zero-Shot Reasoning in the Gold Investment

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved remarkable success recently, displaying exceptional capabilities in creating understandable and organized text. These LLMs have been utilized in diverse fields, such as clinical research, where domain-specific models like Med-Palm have achieved human-level performance. Recently, researchers have employed advanced prompt engineering to enhance the general reasoning ability of LLMs. Despite the remarkable success of zero-shot Chain-of-Thoughts (CoT) in solving general reasoning tasks, the potential of these methods still remains paid limited attention in the financial reasoning task.To address this issue, we explore multiple prompt strategies and incorporated semantic news information to improve LLMs' performance on financial reasoning tasks.To the best of our knowledge, we are the first to explore this important issue by applying ChatGPT to the gold investment.In this work, our aim is to investigate the financial reasoning capabilities of LLMs and their capacity to generate logical and persuasive investment opinions. We will use ChatGPT, one of the most powerful LLMs recently, and prompt engineering to achieve this goal. Our research will focus on understanding the ability of LLMs in sophisticated analysis and reasoning within the context of investment decision-making. Our study finds that ChatGPT with CoT prompt can provide more explainable predictions and overcome behavioral biases, which is crucial in finance-related tasks and can achieve higher investment returns.


Doubly Mild Generalization for Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Offline Reinforcement Learning (RL) suffers from the extrapolation error and value overestimation. From a generalization perspective, this issue can be attributed to the over-generalization of value functions or policies towards out-of-distribution (OOD) actions. Significant efforts have been devoted to mitigating such generalization, and recent in-sample learning approaches have further succeeded in entirely eschewing it. Nevertheless, we show that mild generalization beyond the dataset can be trusted and leveraged to improve performance under certain conditions. To appropriately exploit generalization in offline RL, we propose Doubly Mild Generalization (DMG), comprising (i) mild action generalization and (ii) mild generalization propagation. The former refers to selecting actions in a close neighborhood of the dataset to maximize the Q values. Even so, the potential erroneous generalization can still be propagated, accumulated, and exacerbated by bootstrapping. In light of this, the latter concept is introduced to mitigate the generalization propagation without impeding the propagation of RL learning signals. Theoretically, DMG guarantees better performance than the in-sample optimal policy in the oracle generalization scenario. Even under worst-case generalization, DMG can still control value overestimation at a certain level and lower bound the performance. Empirically, DMG achieves state-of-the-art performance across Gym-MuJoCo locomotion tasks and challenging AntMaze tasks. Moreover, benefiting from its flexibility in both generalization aspects, DMG enjoys a seamless transition from offline to online learning and attains strong online fine-tuning performance.


Choices are More Important than Efforts: LLM Enables Efficient Multi-Agent Exploration

arXiv.org Artificial Intelligence

With expansive state-action spaces, efficient multi-agent exploration remains a longstanding challenge in reinforcement learning. Although pursuing novelty, diversity, or uncertainty attracts increasing attention, redundant efforts brought by exploration without proper guidance choices poses a practical issue for the community. This paper introduces a systematic approach, termed LEMAE, choosing to channel informative task-relevant guidance from a knowledgeable Large Language Model (LLM) for Efficient Multi-Agent Exploration. Specifically, we ground linguistic knowledge from LLM into symbolic key states, that are critical for task fulfillment, in a discriminative manner at low LLM inference costs. To unleash the power of key states, we design Subspace-based Hindsight Intrinsic Reward (SHIR) to guide agents toward key states by increasing reward density. Additionally, we build the Key State Memory Tree (KSMT) to track transitions between key states in a specific task for organized exploration. Benefiting from diminishing redundant explorations, LEMAE outperforms existing SOTA approaches on the challenging benchmarks (e.g., SMAC and MPE) by a large margin, achieving a 10x acceleration in certain scenarios.


LLM-Empowered State Representation for Reinforcement Learning

arXiv.org Artificial Intelligence

Conventional state representations in reinforcement learning often omit critical task-related details, presenting a significant challenge for value networks in establishing accurate mappings from states to task rewards. Traditional methods typically depend on extensive sample learning to enrich state representations with task-specific information, which leads to low sample efficiency and high time costs. Recently, surging knowledgeable large language models (LLM) have provided promising substitutes for prior injection with minimal human intervention. Motivated by this, we propose LLM-Empowered State Representation (LESR), a novel approach that utilizes LLM to autonomously generate task-related state representation codes which help to enhance the continuity of network mappings and facilitate efficient training. Experimental results demonstrate LESR exhibits high sample efficiency and outperforms state-of-the-art baselines by an average of 29% in accumulated reward in Mujoco tasks and 30% in success rates in Gym-Robotics tasks.


End-to-End $n$-ary Relation Extraction for Combination Drug Therapies

arXiv.org Artificial Intelligence

Combination drug therapies are treatment regimens that involve two or more drugs, administered more commonly for patients with cancer, HIV, malaria, or tuberculosis. Currently there are over 350K articles in PubMed that use the "combination drug therapy" MeSH heading with at least 10K articles published per year over the past two decades. Extracting combination therapies from scientific literature inherently constitutes an $n$-ary relation extraction problem. Unlike in the general $n$-ary setting where $n$ is fixed (e.g., drug-gene-mutation relations where $n=3$), extracting combination therapies is a special setting where $n \geq 2$ is dynamic, depending on each instance. Recently, Tiktinsky et al. (NAACL 2022) introduced a first of its kind dataset, CombDrugExt, for extracting such therapies from literature. Here, we use a sequence-to-sequence style end-to-end extraction method to achieve an F1-Score of $66.7\%$ on the CombDrugExt test set for positive (or effective) combinations. This is an absolute $\approx 5\%$ F1-score improvement even over the prior best relation classification score with spotted drug entities (hence, not end-to-end). Thus our effort introduces a state-of-the-art first model for end-to-end extraction that is already superior to the best prior non end-to-end model for this task. Our model seamlessly extracts all drug entities and relations in a single pass and is highly suitable for dynamic $n$-ary extraction scenarios.


COVID-19 event extraction from Twitter via extractive question answering with continuous prompts

arXiv.org Artificial Intelligence

As COVID-19 ravages the world, social media analytics could augment traditional surveys in assessing how the pandemic evolves and capturing consumer chatter that could help healthcare agencies in addressing it. This typically involves mining disclosure events that mention testing positive for the disease or discussions surrounding perceptions and beliefs in preventative or treatment options. The 2020 shared task on COVID-19 event extraction (conducted as part of the W-NUT workshop during the EMNLP conference) introduced a new Twitter dataset for benchmarking event extraction from COVID-19 tweets. In this paper, we cast the problem of event extraction as extractive question answering using recent advances in continuous prompting in language models. On the shared task test dataset, our approach leads to over 5% absolute micro-averaged F1-score improvement over prior best results, across all COVID-19 event slots. Our ablation study shows that continuous prompts have a major impact on the eventual performance.


Credit Assignment with Meta-Policy Gradient for Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Reward decomposition is a critical problem in centralized training with decentralized execution (CTDE) paradigm for multi-agent reinforcement learning. To take full advantage of global information, which exploits the states from all agents and the related environment for decomposing Q values into individual credits, we propose a general meta-learning-based Mixing Network with Meta Policy Gradient (MNMPG) framework to distill the global hierarchy for delicate reward decomposition. The excitation signal for learning global hierarchy is deduced from the episode reward difference between before and after "exercise updates" through the utility network. Our method is generally applicable to the CTDE method using a monotonic mixing network. Experiments on the StarCraft II micromanagement benchmark demonstrate that our method just with a simple utility network is able to outperform the current state-of-the-art MARL algorithms on 4 of 5 super hard scenarios. Better performance can be further achieved when combined with a role-based utility network.


Deep learning for video game genre classification

arXiv.org Artificial Intelligence

Video game genre classification based on its cover and textual description would be utterly beneficial to many modern identification, collocation, and retrieval systems. At the same time, it is also an extremely challenging task due to the following reasons: First, there exists a wide variety of video game genres, many of which are not concretely defined. Second, video game covers vary in many different ways such as colors, styles, textual information, etc, even for games of the same genre. Third, cover designs and textual descriptions may vary due to many external factors such as country, culture, target reader populations, etc. With the growing competitiveness in the video game industry, the cover designers and typographers push the cover designs to its limit in the hope of attracting sales. The computer-based automatic video game genre classification systems become a particularly exciting research topic in recent years. In this paper, we propose a multi-modal deep learning framework to solve this problem. The contribution of this paper is four-fold. First, we compiles a large dataset consisting of 50,000 video games from 21 genres made of cover images, description text, and title text and the genre information. Second, image-based and text-based, state-of-the-art models are evaluated thoroughly for the task of genre classification for video games. Third, we developed an efficient and salable multi-modal framework based on both images and texts. Fourth, a thorough analysis of the experimental results is given and future works to improve the performance is suggested. The results show that the multi-modal framework outperforms the current state-of-the-art image-based or text-based models. Several challenges are outlined for this task. More efforts and resources are needed for this classification task in order to reach a satisfactory level.