Jiang, Xudong
Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems
Xia, Song, Yu, Yi, Yang, Wenhan, Ding, Meiwen, Chen, Zhuo, Duan, Lingyu, Kot, Alex C., Jiang, Xudong
By locally encoding raw data into intermediate features, collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers. However, recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs). Obfuscation-based methods, such as noise corruption, adversarial representation learning, and information filters, enhance the inversion robustness by obfuscating the task-irrelevant redundancy empirically. However, methods for quantifying such redundancy remain elusive, and the explicit mathematical relation between this redundancy minimization and inversion robustness enhancement has not yet been established. To address that, this work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA. Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy maximization (CEM) algorithm to enhance the inversion robustness. Experimental results on four datasets demonstrate the effectiveness and adaptability of our proposed CEM; without compromising feature utility and computing efficiency, plugging the proposed CEM into obfuscation-based defense mechanisms consistently boosts their inversion robustness, achieving average gains ranging from 12.9\% to 48.2\%. Code is available at \href{https://github.com/xiasong0501/CEM}{https://github.com/xiasong0501/CEM}.
Transferable Adversarial Attacks on SAM and Its Downstream Models
Xia, Song, Yang, Wenhan, Yu, Yi, Lin, Xun, Ding, Henghui, Duan, Lingyu, Jiang, Xudong
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models.
Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing
Xia, Song, Yu, Yi, Jiang, Xudong, Ding, Henghui
Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.
Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing
Qiao, Zhongzheng, Pham, Xuan Huy, Ramasamy, Savitha, Jiang, Xudong, Kayacan, Erdal, Sarabakha, Andriy
In autonomous and mobile robotics, a principal challenge is resilient real-time environmental perception, particularly in situations characterized by unknown and dynamic elements, as exemplified in the context of autonomous drone racing. This study introduces a perception technique for detecting drone racing gates under illumination variations, which is common during high-speed drone flights. The proposed technique relies upon a lightweight neural network backbone augmented with capabilities for continual learning. The envisaged approach amalgamates predictions of the gates' positional coordinates, distance, and orientation, encapsulating them into a cohesive pose tuple. A comprehensive number of tests serve to underscore the efficacy of this approach in confronting diverse and challenging scenarios, specifically those involving variable lighting conditions. The proposed methodology exhibits notable robustness in the face of illumination variations, thereby substantiating its effectiveness.
DocMSU: A Comprehensive Benchmark for Document-level Multimodal Sarcasm Understanding
Du, Hang, Nan, Guoshun, Zhang, Sicheng, Xie, Binzhu, Xu, Junrui, Fan, Hehe, Cui, Qimei, Tao, Xiaofeng, Jiang, Xudong
Multimodal Sarcasm Understanding (MSU) has a wide range of applications in the news field such as public opinion analysis and forgery detection. However, existing MSU benchmarks and approaches usually focus on sentence-level MSU. In document-level news, sarcasm clues are sparse or small and are often concealed in long text. Moreover, compared to sentence-level comments like tweets, which mainly focus on only a few trends or hot topics (e.g., sports events), content in the news is considerably diverse. Models created for sentence-level MSU may fail to capture sarcasm clues in document-level news. To fill this gap, we present a comprehensive benchmark for Document-level Multimodal Sarcasm Understanding (DocMSU). Our dataset contains 102,588 pieces of news with text-image pairs, covering 9 diverse topics such as health, business, etc. The proposed large-scale and diverse DocMSU significantly facilitates the research of document-level MSU in real-world scenarios. To take on the new challenges posed by DocMSU, we introduce a fine-grained sarcasm comprehension method to properly align the pixel-level image features with word-level textual features in documents. Experiments demonstrate the effectiveness of our method, showing that it can serve as a baseline approach to the challenging DocMSU. Our code and dataset are available at https://github.com/Dulpy/DocMSU.
Towards Open Vocabulary Learning: A Survey
Wu, Jianzong, Li, Xiangtai, Xu, Shilin, Yuan, Haobo, Ding, Henghui, Yang, Yibo, Li, Xia, Zhang, Jiangning, Tong, Yunhai, Jiang, Xudong, Ghanem, Bernard, Tao, Dacheng
In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.
A Max-relevance-min-divergence Criterion for Data Discretization with Applications on Naive Bayes
Wang, Shihe, Ren, Jianfeng, Bai, Ruibin, Yao, Yuan, Jiang, Xudong
In many classification models, data is discretized to better estimate its distribution. Existing discretization methods often target at maximizing the discriminant power of discretized data, while overlooking the fact that the primary target of data discretization in classification is to improve the generalization performance. As a result, the data tend to be over-split into many small bins since the data without discretization retain the maximal discriminant information. Thus, we propose a Max-Dependency-Min-Divergence (MDmD) criterion that maximizes both the discriminant information and generalization ability of the discretized data. More specifically, the Max-Dependency criterion maximizes the statistical dependency between the discretized data and the classification variable while the Min-Divergence criterion explicitly minimizes the JS-divergence between the training data and the validation data for a given discretization scheme. The proposed MDmD criterion is technically appealing, but it is difficult to reliably estimate the high-order joint distributions of attributes and the classification variable. We hence further propose a more practical solution, Max-Relevance-Min-Divergence (MRmD) discretization scheme, where each attribute is discretized separately, by simultaneously maximizing the discriminant information and the generalization ability of the discretized data. The proposed MRmD is compared with the state-of-the-art discretization algorithms under the naive Bayes classification framework on 45 machine-learning benchmark datasets. It significantly outperforms all the compared methods on most of the datasets.
Video Question Answering Using CLIP-Guided Visual-Text Attention
Ye, Shuhong, Kong, Weikai, Yao, Chenglin, Ren, Jianfeng, Jiang, Xudong
Cross-modal learning of video and text plays a key role in Video Question Answering (VideoQA). In this paper, we propose a visual-text attention mechanism to utilize the Contrastive Language-Image Pre-training (CLIP) trained on lots of general domain language-image pairs to guide the cross-modal learning for VideoQA. Specifically, we first extract video features using a TimeSformer and text features using a BERT from the target application domain, and utilize CLIP to extract a pair of visual-text features from the general-knowledge domain through the domain-specific learning. We then propose a Cross-domain Learning to extract the attention information between visual and linguistic features across the target domain and general domain. The set of CLIP-guided visual-text features are integrated to predict the answer. The proposed method is evaluated on MSVD-QA and MSRVTT-QA datasets, and outperforms state-of-the-art methods.
Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia Recognition
Hu, Mengjiao, Jiang, Xudong, Sim, Kang, Zhou, Juan Helen, Guan, Cuntai
Deep learning has been successfully applied to recognizing both natural images and medical images. However, there remains a gap in recognizing 3D neuroimaging data, especially for psychiatric diseases such as schizophrenia and depression that have no visible alteration in specific slices. In this study, we propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition. Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics (grey matter, white matter, and cerebrospinal fluid) are decomposed to 2D slices according to neighboring voxel positions and inputted to 2D CNN models pre-trained on the ImageNet to extract feature maps from three views (axial, coronal, and sagittal). Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps. Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third view dimension unprocessed by the 2D CNN model. Multi-metric and multi-view information are fused for final prediction. Our approach outperforms handcrafted feature-based machine learning, deep feature approach with a support vector machine (SVM) classifier and 3D CNN models trained from scratch with better cross-validation results on publicly available Northwestern University Schizophrenia Dataset and the results are replicated on another independent dataset.
Boosting the Discriminant Power of Naive Bayes
Wang, Shihe, Ren, Jianfeng, Lian, Xiaoyu, Bai, Ruibin, Jiang, Xudong
Naive Bayes has been widely used in many applications because of its simplicity and ability in handling both numerical data and categorical data. However, lack of modeling of correlations between features limits its performance. In addition, noise and outliers in the real-world dataset also greatly degrade the classification performance. In this paper, we propose a feature augmentation method employing a stack auto-encoder to reduce the noise in the data and boost the discriminant power of naive Bayes. The proposed stack auto-encoder consists of two auto-encoders for different purposes. The first encoder shrinks the initial features to derive a compact feature representation in order to remove the noise and redundant information. The second encoder boosts the discriminant power of the features by expanding them into a higher-dimensional space so that different classes of samples could be better separated in the higher-dimensional space. By integrating the proposed feature augmentation method with the regularized naive Bayes, the discrimination power of the model is greatly enhanced. The proposed method is evaluated on a set of machine-learning benchmark datasets. The experimental results show that the proposed method significantly and consistently outperforms the state-of-the-art naive Bayes classifiers.