Jiang, Xinyu
City-LEO: Toward Transparent City Management Using LLM with End-to-End Optimization
Jiao, Zihao, Sha, Mengyi, Zhang, Haoyu, Jiang, Xinyu, Qi, Wei
Existing operations research (OR) models and tools play indispensable roles in smart-city operations, yet their practical implementation is limited by the complexity of modeling and deficiencies in optimization proficiency. To generate more relevant and accurate solutions to users' requirements, we propose a large language model (LLM)-based agent ("City-LEO") that enhances the efficiency and transparency of city management through conversational interactions. Specifically, to accommodate diverse users' requirements and enhance computational tractability, City-LEO leverages LLM's logical reasoning capabilities on prior knowledge to scope down large-scale optimization problems efficiently. In the human-like decision process, City-LEO also incorporates End-to-end (E2E) model to synergize the prediction and optimization. The E2E framework be conducive to coping with environmental uncertainties and involving more query-relevant features, and then facilitates transparent and interpretable decision-making process. In case study, we employ City-LEO in the operations management of e-bike sharing (EBS) system. The numerical results demonstrate that City-LEO has superior performance when benchmarks against the full-scale optimization problem. With less computational time, City-LEO generates more satisfactory and relevant solutions to the users' requirements, and achieves lower global suboptimality without significantly compromising accuracy. In a broader sense, our proposed agent offers promise to develop LLM-embedded OR tools for smart-city operations management.
Federated Joint Learning of Robot Networks in Stroke Rehabilitation
Jiang, Xinyu, Guo, Yibei, Hu, Mengsha, Jin, Ruoming, Phan, Hai, Alberts, Jay, Liu, Rui
Advanced by rich perception and precise execution, robots possess immense potential to provide professional and customized rehabilitation exercises for patients with mobility impairments caused by strokes. Autonomous robotic rehabilitation significantly reduces human workloads in the long and tedious rehabilitation process. However, training a rehabilitation robot is challenging due to the data scarcity issue. This challenge arises from privacy concerns (e.g., the risk of leaking private disease and identity information of patients) during clinical data access and usage. Data from various patients and hospitals cannot be shared for adequate robot training, further compromising rehabilitation safety and limiting implementation scopes. To address this challenge, this work developed a novel federated joint learning (FJL) method to jointly train robots across hospitals. FJL also adopted a long short-term memory network (LSTM)-Transformer learning mechanism to effectively explore the complex tempo-spatial relations among patient mobility conditions and robotic rehabilitation motions. To validate FJL's effectiveness in training a robot network, a clinic-simulation combined experiment was designed. Real rehabilitation exercise data from 200 patients with stroke diseases (upper limb hemiplegia, Parkinson's syndrome, and back pain syndrome) were adopted. Inversely driven by clinical data, 300,000 robotic rehabilitation guidances were simulated. FJL proved to be effective in joint rehabilitation learning, performing 20% - 30% better than baseline methods.
FreeA: Human-object Interaction Detection using Free Annotation Labels
Wang, Yuxiao, Wei, Zhenao, Jiang, Xinyu, Lei, Yu, Xue, Weiying, Liu, Jinxiu, Liu, Qi
Recent human-object interaction (HOI) detection approaches rely on high cost of manpower and require comprehensive annotated image datasets. In this paper, we propose a novel self-adaption language-driven HOI detection method, termed as FreeA, without labeling by leveraging the adaptability of CLIP to generate latent HOI labels. To be specific, FreeA matches image features of human-object pairs with HOI text templates, and a priori knowledge-based mask method is developed to suppress improbable interactions. In addition, FreeA utilizes the proposed interaction correlation matching method to enhance the likelihood of actions related to a specified action, further refine the generated HOI labels. Experiments on two benchmark datasets show that FreeA achieves state-of-the-art performance among weakly supervised HOI models. Our approach is +8.58 mean Average Precision (mAP) on HICO-DET and +1.23 mAP on V-COCO more accurate in localizing and classifying the interactive actions than the newest weakly model, and +1.68 mAP and +7.28 mAP than the latest weakly+ model, respectively. Code will be available at https://drliuqi.github.io/.
Interpretable Ensemble Learning for Materials Property Prediction with Classical Interatomic Potentials: Carbon as an Example
Jiang, Xinyu, Sun, Haofan, Choudhary, Kamal, Zhuang, Houlong, Nian, Qiong
Machine learning (ML) is widely used to explore crystal materials and predict their properties. However, the training is time-consuming for deep-learning models, and the regression process is a black box that is hard to interpret. Also, the preprocess to transfer a crystal structure into the input of ML, called descriptor, needs to be designed carefully. To efficiently predict important properties of materials, we propose an approach based on ensemble learning consisting of regression trees to predict formation energy and elastic constants based on small-size datasets of carbon allotropes as an example. Without using any descriptor, the inputs are the properties calculated by molecular dynamics with 9 different classical interatomic potentials. Overall, the results from ensemble learning are more accurate than those from classical interatomic potentials, and ensemble learning can capture the relatively accurate properties from the 9 classical potentials as criteria for predicting the final properties.
Spotlights: Probing Shapes from Spherical Viewpoints
Wei, Jiaxin, Liu, Lige, Cheng, Ran, Jiang, Wenqing, Xu, Minghao, Jiang, Xinyu, Sun, Tao, Schwertfeger, Soren, Kneip, Laurent
Recent years have witnessed the surge of learned representations that directly build upon point clouds. Though becoming increasingly expressive, most existing representations still struggle to generate ordered point sets. Inspired by spherical multi-view scanners, we propose a novel sampling model called Spotlights to represent a 3D shape as a compact 1D array of depth values. It simulates the configuration of cameras evenly distributed on a sphere, where each virtual camera casts light rays from its principal point through sample points on a small concentric spherical cap to probe for the possible intersections with the object surrounded by the sphere. The structured point cloud is hence given implicitly as a function of depths. We provide a detailed geometric analysis of this new sampling scheme and prove its effectiveness in the context of the point cloud completion task. Experimental results on both synthetic and real data demonstrate that our method achieves competitive accuracy and consistency while having a significantly reduced computational cost. Furthermore, we show superior performance on the downstream point cloud registration task over state-of-the-art completion methods.