Jiang, Tanqiu
RAPID: Retrieval Augmented Training of Differentially Private Diffusion Models
Jiang, Tanqiu, Li, Changjiang, Ma, Fenglong, Wang, Ting
Differentially private diffusion models (DPDMs) harness the remarkable generative capabilities of diffusion models while enforcing differential privacy (DP) for sensitive data. However, existing DPDM training approaches often suffer from significant utility loss, large memory footprint, and expensive inference cost, impeding their practical uses. To overcome such limitations, we present RAPID: Retrieval Augmented PrIvate Diffusion model, a novel approach that integrates retrieval augmented generation (RAG) into DPDM training. Specifically, RAPID leverages available public data to build a knowledge base of sample trajectories; when training the diffusion model on private data, RAPID computes the early sampling steps as queries, retrieves similar trajectories from the knowledge base as surrogates, and focuses on training the later sampling steps in a differentially private manner. Extensive evaluation using benchmark datasets and models demonstrates that, with the same privacy guarantee, RAPID significantly outperforms state-of-the-art approaches by large margins in generative quality, memory footprint, and inference cost, suggesting that retrieval-augmented DP training represents a promising direction for developing future privacy-preserving generative models. The code is available at: https://github.com/TanqiuJiang/RAPID
GraphRAG under Fire
Liang, Jiacheng, Wang, Yuhui, Li, Changjiang, Zhu, Rongyi, Jiang, Tanqiu, Gong, Neil, Wang, Ting
GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their reasoning. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; meanwhile, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98% success rate) and scalability (using less than 68% poisoning text). We also explore potential defensive measures and their limitations, identifying promising directions for future research.
RobustKV: Defending Large Language Models against Jailbreak Attacks via KV Eviction
Jiang, Tanqiu, Wang, Zian, Liang, Jiacheng, Li, Changjiang, Wang, Yuhui, Wang, Ting
Jailbreak attacks circumvent LLMs' built-in safeguards by concealing harmful queries within jailbreak prompts. While existing defenses primarily focus on mitigating the effects of jailbreak prompts, they often prove inadequate as jailbreak prompts can take arbitrary, adaptive forms. This paper presents RobustKV, a novel defense that adopts a fundamentally different approach by selectively removing critical tokens of harmful queries from key-value (KV) caches. Intuitively, for a jailbreak prompt to be effective, its tokens must achieve sufficient'importance' (as measured by attention scores), which inevitably lowers the importance of tokens in the concealed harmful query. Thus, by strategically evicting the KVs of the lowest-ranked tokens, RobustKV diminishes the presence of the harmful query in the KV cache, thus preventing the LLM from generating malicious responses. Extensive evaluation using benchmark datasets and models demonstrates that RobustKV effectively counters state-of-the-art jailbreak attacks while maintaining the LLM's general performance on benign queries. Moreover, RobustKV creates an intriguing evasiveness dilemma for adversaries, forcing them to balance between evading RobustKV and bypassing the LLM's built-in safeguards. This trade-off contributes to RobustKV's robustness against adaptive attacks. Large language models (LLMs) have gained surging popularity due to their unprecedented performance across various tasks. However, recent studies reveal that LLMs are vulnerable to a range of malicious manipulations, including training data leakage (Carlini et al., 2021), toxic content generation (Deshpande et al., 2023), and malicious fine-tuning (Qi et al., 2024). Of particular concern are jailbreak attacks, which represent a major threat to LLM security (Liu et al., 2023a).