Goto

Collaborating Authors

 Jiang, Sihang


AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model

arXiv.org Artificial Intelligence

Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.


EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data

arXiv.org Artificial Intelligence

Autonomous agents operating on the graphical user interfaces (GUIs) of various applications hold immense practical value. Unlike the large language model (LLM)-based methods which rely on structured texts and customized backends, the approaches using large vision-language models (LVLMs) are more intuitive and adaptable as they can visually perceive and directly interact with screens, making them indispensable in general scenarios without text metadata and tailored backends. Given the lack of high-quality training data for GUI-related tasks in existing work, this paper aims to enhance the GUI understanding and interacting capabilities of LVLMs through a data-driven approach. We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web. Evaluation results on various GUI and agent benchmarks demonstrate that the model trained with the dataset generated through EDGE exhibits superior webpage understanding capabilities, which can then be easily transferred to previously unseen desktop and mobile environments. Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work. Our source code, the dataset and the model are available at https://anonymous.4open.science/r/EDGE-1CDB.


Enhancing Quantitative Reasoning Skills of Large Language Models through Dimension Perception

arXiv.org Artificial Intelligence

Quantities are distinct and critical components of texts that characterize the magnitude properties of entities, providing a precise perspective for the understanding of natural language, especially for reasoning tasks. In recent years, there has been a flurry of research on reasoning tasks based on large language models (LLMs), most of which solely focus on numerical values, neglecting the dimensional concept of quantities with units despite its importance. We argue that the concept of dimension is essential for precisely understanding quantities and of great significance for LLMs to perform quantitative reasoning. However, the lack of dimension knowledge and quantity-related benchmarks has resulted in low performance of LLMs. Hence, we present a framework to enhance the quantitative reasoning ability of language models based on dimension perception. We first construct a dimensional unit knowledge base (DimUnitKB) to address the knowledge gap in this area. We propose a benchmark DimEval consisting of seven tasks of three categories to probe and enhance the dimension perception skills of LLMs. To evaluate the effectiveness of our methods, we propose a quantitative reasoning task and conduct experiments. The experimental results show that our dimension perception method dramatically improves accuracy (43.55%->50.67%) on quantitative reasoning tasks compared to GPT-4.


Domain Mastery Benchmark: An Ever-Updating Benchmark for Evaluating Holistic Domain Knowledge of Large Language Model--A Preliminary Release

arXiv.org Artificial Intelligence

Domain knowledge refers to the in-depth understanding, expertise, and familiarity with a specific subject, industry, field, or area of special interest. The existing benchmarks are all lack of an overall design for domain knowledge evaluation. Holding the belief that the real ability of domain language understanding can only be fairly evaluated by an comprehensive and in-depth benchmark, we introduces the Domma, a Domain Mastery Benchmark. DomMa targets at testing Large Language Models (LLMs) on their domain knowledge understanding, it features extensive domain coverage, large data volume, and a continually updated data set based on Chinese 112 first-level subject classifications. DomMa consist of 100,000 questions in both Chinese and English sourced from graduate entrance examinations and undergraduate exams in Chinese college. We have also propose designs to make benchmark and evaluation process more suitable to LLMs.


Go Beyond The Obvious: Probing the gap of INFORMAL reasoning ability between Humanity and LLMs by Detective Reasoning Puzzle Benchmark

arXiv.org Artificial Intelligence

Informal reasoning ability is the ability to reason based on common sense, experience, and intuition.Humans use informal reasoning every day to extract the most influential elements for their decision-making from a large amount of life-like information.With the rapid development of language models, the realization of general artificial intelligence has emerged with hope. Given the outstanding informal reasoning ability of humans, how much informal reasoning ability language models have has not been well studied by scholars.In order to explore the gap between humans and language models in informal reasoning ability, this paper constructs a Detective Reasoning Benchmark, which is an assembly of 1,200 questions gathered from accessible online resources, aims at evaluating the model's informal reasoning ability in real-life context.Considering the improvement of the model's informal reasoning ability restricted by the lack of benchmark, we further propose a Self-Question Prompt Framework that mimics human thinking to enhance the model's informal reasoning ability.The goals of self-question are to find key elements, deeply investigate the connections between these elements, encourage the relationship between each element and the problem, and finally, require the model to reasonably answer the problem.The experimental results show that human performance greatly outperforms the SoTA Language Models in Detective Reasoning Benchmark.Besides, Self-Question is proven to be the most effective prompt engineering in improving GPT-4's informal reasoning ability, but it still does not even surpass the lowest score made by human participants.Upon acceptance of the paper, the source code for the benchmark will be made publicly accessible.


Xiezhi: An Ever-Updating Benchmark for Holistic Domain Knowledge Evaluation

arXiv.org Artificial Intelligence

New Natural Langauge Process (NLP) benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present Xiezhi, the most comprehensive evaluation suite designed to assess holistic domain knowledge. Xiezhi comprises multiple-choice questions across 516 diverse disciplines ranging from 13 different subjects with 249,587 questions and accompanied by Xiezhi-Specialty and Xiezhi-Interdiscipline, both with 15k questions. We conduct evaluation of the 47 cutting-edge LLMs on Xiezhi. Results indicate that LLMs exceed average performance of humans in science, engineering, agronomy, medicine, and art, but fall short in economics, jurisprudence, pedagogy, literature, history, and management.


Sem4SAP: Synonymous Expression Mining From Open Knowledge Graph For Language Model Synonym-Aware Pretraining

arXiv.org Artificial Intelligence

The model's ability to understand synonymous expression is crucial in many kinds of downstream tasks. It will make the model to better understand the similarity between context, and more robust to the synonym substitution attack. However, many Pretrained Language Model (PLM) lack synonym knowledge due to limitation of small-scale synsets and PLM's pretraining objectives. In this paper, we propose a framework called Sem4SAP to mine synsets from Open Knowledge Graph (Open-KG) and using the mined synsets to do synonym-aware pretraining for language models. We propose to coarsly filter the content in Open-KG and use the frequency information to better help the clustering process under low-resource unsupervised conditions. We expand the mined synsets by migrating core semantics between synonymous expressions.We also propose two novel and effective synonym-aware pre-training methods for injecting synonym knowledge into PLMs.Extensive experiments demonstrate that Sem4SAP can dramatically outperform the original PLMs and other baselines on ten different tasks.


GANTEE: Generative Adversatial Network for Taxonomy Entering Evaluation

arXiv.org Artificial Intelligence

Taxonomy is formulated as directed acyclic concepts graphs or trees that support many downstream tasks. Many new coming concepts need to be added to an existing taxonomy. The traditional taxonomy expansion task aims only at finding the best position for new coming concepts in the existing taxonomy. However, they have two drawbacks when being applied to the real-scenarios. The previous methods suffer from low-efficiency since they waste much time when most of the new coming concepts are indeed noisy concepts. They also suffer from low-effectiveness since they collect training samples only from the existing taxonomy, which limits the ability of the model to mine more hypernym-hyponym relationships among real concepts. This paper proposes a pluggable framework called Generative Adversarial Network for Taxonomy Entering Evaluation (GANTEE) to alleviate these drawbacks. A generative adversarial network is designed in this framework by discriminative models to alleviate the first drawback and the generative model to alleviate the second drawback. Two discriminators are used in GANTEE to provide long-term and short-term rewards, respectively. Moreover, to further improve the efficiency, pre-trained language models are used to retrieve the representation of the concepts quickly. The experiments on three real-world large-scale datasets with two different languages show that GANTEE improves the performance of the existing taxonomy expansion methods in both effectiveness and efficiency.


Transfer Learning for Sequences via Learning to Collocate

arXiv.org Artificial Intelligence

Transfer learning aims to solve the data sparsity for a target domain by applying information of the source domain. Given a sequence (e.g. a natural language sentence), the transfer learning, usually enabled by recurrent neural network (RNN), represents the sequential information transfer. RNN uses a chain of repeating cells to model the sequence data. However, previous studies of neural network based transfer learning simply represents the whole sentence by a single vector, which is unfeasible for seq2seq and sequence labeling. Meanwhile, such layer-wise transfer learning mechanisms lose the fine-grained cell-level information from the source domain. In this paper, we proposed the aligned recurrent transfer, ART, to achieve cell-level information transfer. ART is under the pre-training framework. Each cell attentively accepts transferred information from a set of positions in the source domain. Therefore, ART learns the cross-domain word collocations in a more flexible way. We conducted extensive experiments on both sequence labeling tasks (POS tagging, NER) and sentence classification (sentiment analysis). ART outperforms the state-of-the-arts over all experiments.