Jiang, Qian
A Haptic-Based Proximity Sensing System for Buried Object in Granular Material
Zhang, Zeqing, Jia, Ruixing, Yan, Youcan, Han, Ruihua, Lin, Shijie, Jiang, Qian, Zhang, Liangjun, Pan, Jia
The proximity perception of objects in granular materials is significant, especially for applications like minesweeping. However, due to particles' opacity and complex properties, existing proximity sensors suffer from high costs from sophisticated hardware and high user-cost from unintuitive results. In this paper, we propose a simple yet effective proximity sensing system for underground stuff based on the haptic feedback of the sensor-granules interaction. We study and employ the unique characteristic of particles -- failure wedge zone, and combine the machine learning method -- Gaussian process regression, to identify the force signal changes induced by the proximity of objects, so as to achieve near-field perception. Furthermore, we design a novel trajectory to control the probe searching in granules for a wide range of perception. Also, our proximity sensing system can adaptively determine optimal parameters for robustness operation in different particles. Experiments demonstrate our system can perceive underground objects over 0.5 to 7 cm in advance among various materials.
Federated Recommendation via Hybrid Retrieval Augmented Generation
Zeng, Huimin, Yue, Zhenrui, Jiang, Qian, Wang, Dong
Federated Recommendation (FR) emerges as a novel paradigm that enables privacy-preserving recommendations. However, traditional FR systems usually represent users/items with discrete identities (IDs), suffering from performance degradation due to the data sparsity and heterogeneity in FR. On the other hand, Large Language Models (LLMs) as recommenders have proven effective across various recommendation scenarios. Yet, LLM-based recommenders encounter challenges such as low inference efficiency and potential hallucination, compromising their performance in real-world scenarios. To this end, we propose GPT-FedRec, a federated recommendation framework leveraging ChatGPT and a novel hybrid Retrieval Augmented Generation (RAG) mechanism. GPT-FedRec is a two-stage solution. The first stage is a hybrid retrieval process, mining ID-based user patterns and text-based item features. Next, the retrieved results are converted into text prompts and fed into GPT for re-ranking. Our proposed hybrid retrieval mechanism and LLM-based re-rank aims to extract generalized features from data and exploit pretrained knowledge within LLM, overcoming data sparsity and heterogeneity in FR. In addition, the RAG approach also prevents LLM hallucination, improving the recommendation performance for real-world users. Experimental results on diverse benchmark datasets demonstrate the superior performance of GPT-FedRec against state-of-the-art baseline methods.
GRAINS: Proximity Sensing of Objects in Granular Materials
Zhang, Zeqing, Jia, Ruixing, Yan, Youcan, Han, Ruihua, Lin, Shijie, Jiang, Qian, Zhang, Liangjun, Pan, Jia
Proximity sensing detects an object's presence without contact. However, research has rarely explored proximity sensing in granular materials (GM) due to GM's lack of visual and complex properties. In this paper, we propose a granular-material-embedded autonomous proximity sensing system (GRAINS) based on three granular phenomena (fluidization, jamming, and failure wedge zone). GRAINS can automatically sense buried objects beneath GM in real-time manner (at least ~20 hertz) and perceive them 0.5 ~ 7 centimeters ahead in different granules without the use of vision or touch. We introduce a new spiral trajectory for the probe raking in GM, combining linear and circular motions, inspired by a common granular fluidization technique. Based on the observation of force-raising when granular jamming occurs in the failure wedge zone in front of the probe during its raking, we employ Gaussian process regression to constantly learn and predict the force patterns and detect the force anomaly resulting from granular jamming to identify the proximity sensing of buried objects. Finally, we apply GRAINS to a Bayesian-optimization-algorithm-guided exploration strategy to successfully localize underground objects and outline their distribution using proximity sensing without contact or digging. This work offers a simple yet reliable method with potential for safe operation in building habitation infrastructure on an alien planet without human intervention.
Understanding and Constructing Latent Modality Structures in Multi-modal Representation Learning
Jiang, Qian, Chen, Changyou, Zhao, Han, Chen, Liqun, Ping, Qing, Tran, Son Dinh, Xu, Yi, Zeng, Belinda, Chilimbi, Trishul
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.