Goto

Collaborating Authors

 Jiang, Lingxiao


Unveiling Pitfalls: Understanding Why AI-driven Code Agents Fail at GitHub Issue Resolution

arXiv.org Artificial Intelligence

AI-driven software development has rapidly advanced with the emergence of software development agents that leverage large language models (LLMs) to tackle complex, repository-level software engineering tasks. These agents go beyond just generation of final code; they engage in multi-step reasoning, utilize various tools for code modification and debugging, and interact with execution environments to diagnose and iteratively resolve issues. However, most existing evaluations focus primarily on static analyses of final code outputs, yielding limited insights into the agents' dynamic problem-solving processes. To fill this gap, we conduct an in-depth empirical study on 3,977 solving-phase trajectories and 3,931 testing-phase logs from 8 top-ranked agents evaluated on 500 GitHub issues in the SWE-Bench benchmark. Our exploratory analysis shows that Python execution errors during the issue resolution phase correlate with lower resolution rates and increased reasoning overheads. We have identified the most prevalent errors -- such as ModuleNotFoundError and TypeError -- and highlighted particularly challenging errors like OSError and database-related issues (e.g., IntegrityError) that demand significantly more debugging effort. Furthermore, we have discovered 3 bugs in the SWE-Bench platform that affect benchmark fairness and accuracy; these issues have been reported to and confirmed by the maintainers. To promote transparency and foster future research, we publicly share our datasets and analysis scripts.


Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios

arXiv.org Artificial Intelligence

In recent years, AI-based software engineering has progressed from pre-trained models to advanced agentic workflows, with Software Development Agents representing the next major leap. These agents, capable of reasoning, planning, and interacting with external environments, offer promising solutions to complex software engineering tasks. However, while much research has evaluated code generated by large language models (LLMs), comprehensive studies on agent-generated patches, particularly in real-world settings, are lacking. This study addresses that gap by evaluating 4,892 patches from 10 top-ranked agents on 500 real-world GitHub issues from SWE-Bench Verified, focusing on their impact on code quality. Our analysis shows no single agent dominated, with 170 issues unresolved, indicating room for improvement. Even for patches that passed unit tests and resolved issues, agents made different file and function modifications compared to the gold patches from repository developers, revealing limitations in the benchmark's test case coverage. Most agents maintained code reliability and security, avoiding new bugs or vulnerabilities; while some agents increased code complexity, many reduced code duplication and minimized code smells. Finally, agents performed better on simpler codebases, suggesting that breaking complex tasks into smaller sub-tasks could improve effectiveness. This study provides the first comprehensive evaluation of agent-generated patches on real-world GitHub issues, offering insights to advance AI-driven software development.


Transducer Tuning: Efficient Model Adaptation for Software Tasks Using Code Property Graphs

arXiv.org Artificial Intelligence

Large language models have demonstrated promising performance across various software engineering tasks. While fine-tuning is a common practice to adapt these models for downstream tasks, it becomes challenging in resource-constrained environments due to increased memory requirements from growing trainable parameters in increasingly large language models. We introduce \approach, a technique to adapt large models for downstream code tasks using Code Property Graphs (CPGs). Our approach introduces a modular component called \transducer that enriches code embeddings with structural and dependency information from CPGs. The Transducer comprises two key components: Graph Vectorization Engine (GVE) and Attention-Based Fusion Layer (ABFL). GVE extracts CPGs from input source code and transforms them into graph feature vectors. ABFL then fuses those graphs feature vectors with initial code embeddings from a large language model. By optimizing these transducers for different downstream tasks, our approach enhances the models without the need to fine-tune them for specific tasks. We have evaluated \approach on three downstream tasks: code summarization, assert generation, and code translation. Our results demonstrate competitive performance compared to full parameter fine-tuning while reducing up to 99\% trainable parameters to save memory. \approach also remains competitive against other fine-tuning approaches (e.g., LoRA, Prompt-Tuning, Prefix-Tuning) while using only 1.5\%-80\% of their trainable parameters. Our findings show that integrating structural and dependency information through Transducer Tuning enables more efficient model adaptation, making it easier for users to adapt large models in resource-constrained settings.


Your Instructions Are Not Always Helpful: Assessing the Efficacy of Instruction Fine-tuning for Software Vulnerability Detection

arXiv.org Artificial Intelligence

Software, while beneficial, poses potential cybersecurity risks due to inherent vulnerabilities. Detecting these vulnerabilities is crucial, and deep learning has shown promise as an effective tool for this task due to its ability to perform well without extensive feature engineering. However, a challenge in deploying deep learning for vulnerability detection is the limited availability of training data. Recent research highlights the deep learning efficacy in diverse tasks. This success is attributed to instruction fine-tuning, a technique that remains under-explored in the context of vulnerability detection. This paper investigates the capability of models, specifically a recent language model, to generalize beyond the programming languages used in their training data. It also examines the role of natural language instructions in enhancing this generalization. Our study evaluates the model performance on a real-world dataset to predict vulnerable code. We present key insights and lessons learned, contributing to understanding the deep learning application in software vulnerability detection.


Investigating Math Word Problems using Pretrained Multilingual Language Models

arXiv.org Artificial Intelligence

In this paper, we revisit math word problems~(MWPs) from the cross-lingual and multilingual perspective. We construct our MWP solvers over pretrained multilingual language models using sequence-to-sequence model with copy mechanism. We compare how the MWP solvers perform in cross-lingual and multilingual scenarios. To facilitate the comparison of cross-lingual performance, we first adapt the large-scale English dataset MathQA as a counterpart of the Chinese dataset Math23K. Then we extend several English datasets to bilingual datasets through machine translation plus human annotation. Our experiments show that the MWP solvers may not be transferred to a different language even if the target expressions have the same operator set and constants. But for both cross-lingual and multilingual cases, it can be better generalized if problem types exist on both source language and target language.


InferCode: Self-Supervised Learning of Code Representations by Predicting Subtrees

arXiv.org Artificial Intelligence

Building deep learning models on source code has found many successful software engineering applications, such as code search, code comment generation, bug detection, code migration, and so on. Current learning techniques, however, have a major drawback that these models are mostly trained on datasets labeled for particular downstream tasks, and code representations may not be suitable for other tasks. While some techniques produce representations from unlabeled code, they are far from satisfactory when applied to downstream tasks. Although certain techniques generate representations from unlabeled code when applied to downstream tasks they are far from satisfactory. This paper proposes InferCode to overcome the limitation by adapting the self-supervised learning mechanism to build source code model. The key novelty lies in training code representations by predicting automatically identified subtrees from the context of the ASTs. Subtrees in ASTs are treated with InferCode as the labels for training code representations without any human labeling effort or the overhead of expensive graph construction, and the trained representations are no longer tied to any specific downstream tasks or code units. We trained an InferCode model instance using the Tree-based CNN as the encoder of a large set of Java code and applied it to downstream unsupervised tasks such as code clustering, code clone detection, cross-language code search or reused under a transfer learning scheme to continue training the model weights for supervised tasks such as code classification and method name prediction. Compared to previous code learning techniques applied to the same downstream tasks, such as Code2Vec, Code2Seq, ASTNN, higher performance results are achieved using our pre-trained InferCode model with a significant margin for most tasks including those involving different programming languages.


TreeCaps: Tree-Based Capsule Networks for Source Code Processing

arXiv.org Artificial Intelligence

Recently program learning techniques have been proposed to process source code based on syntactical structures (e.g., Abstract Syntax Trees) and/or semantic information (e.g., Dependency Graphs). Although graphs may be better at capturing various viewpoints of code semantics than trees, constructing graph inputs from code needs static code semantic analysis that may not be accurate and introduces noise during learning. Although syntax trees are precisely defined according to the language grammar and easier to construct and process than graphs, previous tree-based learning techniques have not been able to learn semantic information from trees to achieve better accuracy than graph-based techniques. We propose a new learning technique, named TreeCaps, by fusing together capsule networks with tree-based convolutional neural networks, to achieve learning accuracy higher than existing graph-based techniques while it is based only on trees. TreeCaps introduces novel variable-to-static routing algorithms into the capsule networks to compensate for the loss of previous routing algorithms. Aside from accuracy, we also find that TreeCaps is the most robust to withstand those semantic-preserving program transformations that change code syntax without modifying the semantics. Evaluated on a large number of Java and C/C programs, TreeCaps models outperform prior deep learning models of program source code, in terms of both accuracy and robustness for program comprehension tasks such as code functionality classification and function name prediction.


TreeCaps: Tree-Structured Capsule Networks for Program Source Code Processing

arXiv.org Machine Learning

Program comprehension is a fundamental task in software development and maintenance processes. Software developers often need to understand a large amount of existing code before they can develop new features or fix bugs in existing programs. Being able to process programming language code automatically and provide summaries of code functionality accurately can significantly help developers to reduce time spent in code navigation and understanding, and thus increase productivity. Different from natural language articles, source code in programming languages often follows rigid syntactical structures and there can exist dependencies among code elements that are located far away from each other through complex control flows and data flows. Existing studies on tree-based convolutional neural networks (TBCNN) and gated graph neural networks (GGNN) are not able to capture essential semantic dependencies among code elements accurately. In this paper, we propose novel tree-based capsule networks (TreeCaps) and relevant techniques for processing program code in an automated way that encodes code syntactical structures and captures code dependencies more accurately. Based on evaluation on programs written in different programming languages, we show that our TreeCaps-based approach can outperform other approaches in classifying the functionalities of many programs.


SAR: Learning Cross-Language API Mappings with Little Knowledge

arXiv.org Machine Learning

To save manual effort, developers often translate programs from one programming language to another, instead of implementing it from scratch. Translating application program interfaces (APIs) used in one language to functionally equivalent ones available in another language is an important aspect of program translation. Existing approaches facilitate the translation by automatically identifying the API mappings across programming languages. However, all these approaches still require large amount of manual effort in preparing parallel program corpora, ranging from pairs of APIs, to manually identified code in different languages that are considered as functionally equivalent. To minimize the manual effort in identifying parallel program corpora and API mappings, this paper aims at an automated approach to map APIs across languages with much less knowledge a priori needed than other existing approaches. The approach is based on an realization of the notion of domain adaption combined with code embedding, which can better align two vector spaces: taking as input large sets of programs, our approach first generates numeric vector representations of the programs, especially the APIs used in each language, and it adapts generative adversarial networks (GAN) to align the vectors from the spaces of two languages. For a better alignment, we initialize the GAN with parameters derived from optional API mapping seeds that can be identified accurately with a simple automatic signature-based matching heuristic. Then the cross-language API mappings can be identified via nearest-neighbors queries in the aligned vector spaces.


Cross-Language Learning for Program Classification Using Bilateral Tree-Based Convolutional Neural Networks

AAAI Conferences

Towards the vision of translating code that implements an algorithm from one programming language into another, this paper proposes an approach for automated program classification using bilateral tree-based convolutional neural networks (BiTBCNNs). It is layered on top of two tree-based convolutional neural networks (TBCNNs), each of which recognizes the algorithm of code written in an individual programming language. The combination layer of the networks recognizes the similarities and differences among code in different programming languages. The BiTBCNNs are trained using the source code in different languages but known to implement the same algorithms and/or functionalities. For a preliminary evaluation, we use 3591 Java and 3534 C++ code snippets from 6 algorithms we crawled systematically from GitHub. We obtained over 90% accuracy in the cross-language binary classification task to tell whether any given two code snippets implement a same algorithm. Also, for the algorithm classification task, i.e., to predict which one of the six algorithm labels is implemented by an arbitrary C++ code snippet, we achieved over 80% precision.