Jiang, Haiyun
Graph-to-Vision: Multi-graph Understanding and Reasoning using Vision-Language Models
Li, Ruizhou, Jiang, Haiyun
Graph Neural Networks (GNNs), as the dominant paradigm for graph-structured learning, have long faced dual challenges of exponentially escalating computational complexity and inadequate cross-scenario generalization capability. With the rapid advancement of multimodal learning, Vision-Language Models (VLMs) have demonstrated exceptional cross-modal relational reasoning capabilities and generalization capacities, thereby opening up novel pathways for overcoming the inherent limitations of conventional graph learning paradigms. However, current research predominantly concentrates on investigating the single-graph reasoning capabilities of VLMs, which fundamentally fails to address the critical requirement for coordinated reasoning across multiple heterogeneous graph data in real-world application scenarios. To address these limitations, we propose the first multi-graph joint reasoning benchmark for VLMs. Our benchmark encompasses four graph categories: knowledge graphs, flowcharts, mind maps, and route maps,with each graph group accompanied by three progressively challenging instruction-response pairs. Leveraging this benchmark, we conducted comprehensive capability assessments of state-of-the-art VLMs and performed fine-tuning on open-source models. This study not only addresses the underexplored evaluation gap in multi-graph reasoning for VLMs but also empirically validates their generalization superiority in graph-structured learning.
Empowering Users in Digital Privacy Management through Interactive LLM-Based Agents
Sun, Bolun, Zhou, Yifan, Jiang, Haiyun
This paper presents a novel application of large language models (LLMs) to enhance user comprehension of privacy policies through an interactive dialogue agent. We demonstrate that LLMs significantly outperform traditional models in tasks like Data Practice Identification, Choice Identification, Policy Summarization, and Privacy Question Answering, setting new benchmarks in privacy policy analysis. Building on these findings, we introduce an innovative LLM-based agent that functions as an expert system for processing website privacy policies, guiding users through complex legal language without requiring them to pose specific questions. A user study with 100 participants showed that users assisted by the agent had higher comprehension levels (mean score of 2.6 out of 3 vs. 1.8 in the control group), reduced cognitive load (task difficulty ratings of 3.2 out of 10 vs. 7.8), increased confidence in managing privacy, and completed tasks in less time (5.5 minutes vs. 15.8 minutes). This work highlights the potential of LLM-based agents to transform user interaction with privacy policies, leading to more informed consent and empowering users in the digital services landscape.
GLBench: A Comprehensive Benchmark for Graph with Large Language Models
Li, Yuhan, Wang, Peisong, Zhu, Xiao, Chen, Aochuan, Jiang, Haiyun, Cai, Deng, Chan, Victor Wai Kin, Li, Jia
The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios.
MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge Editing
Li, Jiaqi, Du, Miaozeng, Zhang, Chuanyi, Chen, Yongrui, Hu, Nan, Qi, Guilin, Jiang, Haiyun, Cheng, Siyuan, Tian, Bozhong
Multimodal knowledge editing represents a critical advancement in enhancing the capabilities of Multimodal Large Language Models (MLLMs). Despite its potential, current benchmarks predominantly focus on coarse-grained knowledge, leaving the intricacies of fine-grained (FG) multimodal entity knowledge largely unexplored. This gap presents a notable challenge, as FG entity recognition is pivotal for the practical deployment and effectiveness of MLLMs in diverse real-world scenarios. To bridge this gap, we introduce MIKE, a comprehensive benchmark and dataset specifically designed for the FG multimodal entity knowledge editing. MIKE encompasses a suite of tasks tailored to assess different perspectives, including Vanilla Name Answering, Entity-Level Caption, and Complex-Scenario Recognition. In addition, a new form of knowledge editing, Multi-step Editing, is introduced to evaluate the editing efficiency. Through our extensive evaluations, we demonstrate that the current state-of-the-art methods face significant challenges in tackling our proposed benchmark, underscoring the complexity of FG knowledge editing in MLLMs. Our findings spotlight the urgent need for novel approaches in this domain, setting a clear agenda for future research and development efforts within the community.
MR-GSM8K: A Meta-Reasoning Revolution in Large Language Model Evaluation
Zeng, Zhongshen, Chen, Pengguang, Liu, Shu, Jiang, Haiyun, Jia, Jiaya
In this work, we introduce a novel evaluation paradigm for Large Language Models, one that challenges them to engage in meta-reasoning. This approach addresses critical shortcomings in existing math problem-solving benchmarks, traditionally used to evaluate the cognitive capabilities of agents. Our paradigm shifts the focus from result-oriented assessments, which often overlook the reasoning process, to a more holistic evaluation that effectively differentiates the cognitive capabilities among models. For example, in our benchmark, GPT-4 demonstrates a performance five times better than GPT3-5. The significance of this new paradigm lies in its ability to reveal potential cognitive deficiencies in LLMs that current benchmarks, such as GSM8K, fail to uncover due to their saturation and lack of effective differentiation among varying reasoning abilities. Our comprehensive analysis includes several state-of-the-art math models from both open-source and closed-source communities, uncovering fundamental deficiencies in their training and evaluation approaches. This paper not only advocates for a paradigm shift in the assessment of LLMs but also contributes to the ongoing discourse on the trajectory towards Artificial General Intelligence (AGI). By promoting the adoption of meta-reasoning evaluation methods similar to ours, we aim to facilitate a more accurate assessment of the true cognitive abilities of LLMs.
Is ChatGPT A Good Keyphrase Generator? A Preliminary Study
Song, Mingyang, Jiang, Haiyun, Shi, Shuming, Yao, Songfang, Lu, Shilong, Feng, Yi, Liu, Huafeng, Jing, Liping
The emergence of ChatGPT has recently garnered significant attention from the computational linguistics community. To demonstrate its capabilities as a keyphrase generator, we conduct a preliminary evaluation of ChatGPT for the keyphrase generation task. We evaluate its performance in various aspects, including keyphrase generation prompts, keyphrase generation diversity, and long document understanding. Our evaluation is based on six benchmark datasets, and we adopt the prompt suggested by OpenAI while extending it to six candidate prompts. We find that ChatGPT performs exceptionally well on all six candidate prompts, with minor performance differences observed across the datasets. Based on our findings, we conclude that ChatGPT has great potential for keyphrase generation. Moreover, we discover that ChatGPT still faces challenges when it comes to generating absent keyphrases. Meanwhile, in the final section, we also present some limitations and future expansions of this report.
When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding and Reasoning
Ai, Qihang, Zhou, Jianwu, Jiang, Haiyun, Liu, Lemao, Shi, Shuming
Graph data is ubiquitous in the physical world, and it has always been a challenge to efficiently model graph structures using a unified paradigm for the understanding and reasoning on various graphs. Moreover, in the era of large language models, integrating complex graph information into text sequences has become exceptionally difficult, which hinders the ability to interact with graph data through natural language instructions.The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies. This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities. The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks. The findings suggest new direction for enhancing graph data processing and natural language interaction.
StrategyLLM: Large Language Models as Strategy Generators, Executors, Optimizers, and Evaluators for Problem Solving
Gao, Chang, Jiang, Haiyun, Cai, Deng, Shi, Shuming, Lam, Wai
Most existing chain-of-thought (CoT) prompting methods suffer from the issues of generalizability and consistency, as they often rely on instance-specific solutions that may not be applicable to other cases and lack task-level consistency in their reasoning steps. To address these limitations, we propose a comprehensive framework, StrategyLLM, harnessing the capabilities of LLMs to tackle various tasks. The framework improves generalizability by formulating general problem-solving strategies and enhances consistency by producing consistent solutions using these strategies. StrategyLLM employs four LLM-based agents: strategy generator, executor, optimizer, and evaluator, working together to generate, evaluate, and select promising strategies for a given task automatically. The experimental results demonstrate that StrategyLLM outperforms the competitive baseline CoT-SC that requires human-annotated solutions on 13 datasets across 4 challenging tasks without human involvement, including math reasoning (39.2% $\rightarrow$ 43.3%), commonsense reasoning (70.3% $\rightarrow$ 72.5%), algorithmic reasoning (51.7% $\rightarrow$ 62.0%), and symbolic reasoning (30.0% $\rightarrow$ 79.2%).
Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks
Wang, Yifan, Guo, Qingyan, Ni, Xinzhe, Shi, Chufan, Liu, Lemao, Jiang, Haiyun, Yang, Yujiu
In-context learning (ICL) ability has emerged with the increasing scale of large language models (LLMs), enabling them to learn input-label mappings from demonstrations and perform well on downstream tasks. However, under the standard ICL setting, LLMs may sometimes neglect query-related information in demonstrations, leading to incorrect predictions. To address this limitation, we propose a new paradigm called Hint-enhanced In-Context Learning (HICL) to explore the power of ICL in open-domain question answering, an important form in knowledge-intensive tasks. HICL leverages LLMs' reasoning ability to extract query-related knowledge from demonstrations, then concatenates the knowledge to prompt LLMs in a more explicit way. Furthermore, we track the source of this knowledge to identify specific examples, and introduce a Hint-related Example Retriever (HER) to select informative examples for enhanced demonstrations. We evaluate HICL with HER on 3 open-domain QA benchmarks, and observe average performance gains of 2.89 EM score and 2.52 F1 score on gpt-3.5-turbo, 7.62 EM score and 7.27 F1 score on LLaMA-2-Chat-7B compared with standard setting.
Large Language Models Meet Harry Potter: A Bilingual Dataset for Aligning Dialogue Agents with Characters
Chen, Nuo, Wang, Yan, Jiang, Haiyun, Cai, Deng, Li, Yuhan, Chen, Ziyang, Wang, Longyue, Li, Jia
In recent years, Dialogue-style Large Language Models (LLMs) such as ChatGPT and GPT4 have demonstrated immense potential in constructing open-domain dialogue agents. However, aligning these agents with specific characters or individuals remains a considerable challenge due to the complexities of character representation and the lack of comprehensive annotations. In this paper, we introduce the Harry Potter Dialogue (HPD) dataset, designed to advance the study of dialogue agents and character alignment. The dataset encompasses all dialogue sessions (in both English and Chinese) from the Harry Potter series and is annotated with vital background information, including dialogue scenes, speakers, character relationships, and attributes. These extensive annotations may empower LLMs to unlock character-driven dialogue capabilities. Furthermore, it can serve as a universal benchmark for evaluating how well can a LLM aligning with a specific character. We benchmark LLMs on HPD using both fine-tuning and in-context learning settings. Evaluation results reveal that although there is substantial room for improvement in generating high-quality, character-aligned responses, the proposed dataset is valuable in guiding models toward responses that better align with the character of Harry Potter.