Goto

Collaborating Authors

 Jiang, Feng


S2S-Arena, Evaluating Speech2Speech Protocols on Instruction Following with Paralinguistic Information

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) has brought significant attention to speech models, particularly recent progress in speech2speech protocols supporting speech input and output. However, the existing benchmarks adopt automatic text-based evaluators for evaluating the instruction following ability of these models lack consideration for paralinguistic information in both speech understanding and generation. To address these issues, we introduce S2S-Arena, a novel arena-style S2S benchmark that evaluates instruction-following capabilities with paralinguistic information in both speech-in and speech-out across real-world tasks. We design 154 samples that fused TTS and live recordings in four domains with 21 tasks and manually evaluate existing popular speech models in an arena-style manner. The experimental results show that: (1) in addition to the superior performance of GPT-4o, the speech model of cascaded ASR, LLM, and TTS outperforms the jointly trained model after text-speech alignment in speech2speech protocols; (2) considering paralinguistic information, the knowledgeability of the speech model mainly depends on the LLM backbone, and the multilingual support of that is limited by the speech module; (3) excellent speech models can already understand the paralinguistic information in speech input, but generating appropriate audio with paralinguistic information is still a challenge.


Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles

arXiv.org Artificial Intelligence

User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.


DPO-Shift: Shifting the Distribution of Direct Preference Optimization

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) and its variants have become increasingly popular for aligning language models with human preferences. These methods aim to teach models to better distinguish between chosen (or preferred) and rejected (or dispreferred) responses. However, prior research has identified that the probability of chosen responses often decreases during training, and this phenomenon is known as likelihood displacement. To tackle this challenge, in this work we introduce \method to controllably shift the distribution of the chosen probability. Then, we show that \method exhibits a fundamental trade-off between improving the chosen probability and sacrificing the reward margin, as supported by both theoretical analysis and experimental validation. Furthermore, we demonstrate the superiority of \method over DPO on downstream tasks such as MT-Bench and a designed win rate experiment. We believe this study shows that the likelihood displacement issue of DPO can be effectively mitigated with a simple, theoretically grounded solution. Our code is available at https://github.com/Meaquadddd/DPO-Shift.


IDEA: Image Description Enhanced CLIP-Adapter

arXiv.org Artificial Intelligence

CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.


GoBERT: Gene Ontology Graph Informed BERT for Universal Gene Function Prediction

arXiv.org Artificial Intelligence

Exploring the functions of genes and gene products is crucial to a wide range of fields, including medical research, evolutionary biology, and environmental science. However, discovering new functions largely relies on expensive and exhaustive wet lab experiments. Existing methods of automatic function annotation or prediction mainly focus on protein function prediction with sequence, 3D-structures or protein family information. In this study, we propose to tackle the gene function prediction problem by exploring Gene Ontology graph and annotation with BERT (GoBERT) to decipher the underlying relationships among gene functions. Our proposed novel function prediction task utilizes existing functions as inputs and generalizes the function prediction to gene and gene products. Specifically, two pre-train tasks are designed to jointly train GoBERT to capture both explicit and implicit relations of functions. Neighborhood prediction is a self-supervised multi-label classification task that captures the explicit function relations. Specified masking and recovering task helps GoBERT in finding implicit patterns among functions. The pre-trained GoBERT possess the ability to predict novel functions for various gene and gene products based on known functional annotations. Extensive experiments, biological case studies, and ablation studies are conducted to demonstrate the superiority of our proposed GoBERT.


Impact of Cognitive Load on Human Trust in Hybrid Human-Robot Collaboration

arXiv.org Artificial Intelligence

Human trust plays a crucial role in the effectiveness of human-robot collaboration. Despite its significance, the development and maintenance of an optimal trust level are obstructed by the complex nature of influencing factors and their mechanisms. This study investigates the effects of cognitive load on human trust within the context of a hybrid human-robot collaboration task. An experiment is conducted where the humans and the robot, acting as team members, collaboratively construct pyramids with differentiated levels of task complexity. Our findings reveal that cognitive load exerts diverse impacts on human trust in the robot. Notably, there is an increase in human trust under conditions of high cognitive load. Furthermore, the rewards for performance are substantially higher in tasks with high cognitive load compared to those with low cognitive load, and a significant correlation exists between human trust and the failure risk of performance in tasks with low and medium cognitive load. By integrating interdependent task steps, this research emphasizes the unique dynamics of hybrid human-robot collaboration scenarios. The insights gained not only contribute to understanding how cognitive load influences trust but also assist developers in optimizing collaborative target selection and designing more effective human-robot interfaces in such environments.


Aligning Language Models Using Follow-up Likelihood as Reward Signal

arXiv.org Artificial Intelligence

In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.


Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-AI collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.


$R^3$: "This is My SQL, Are You With Me?" A Consensus-Based Multi-Agent System for Text-to-SQL Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated strong performance on various tasks. To unleash their power on the Text-to-SQL task, we propose $R^3$ (Review-Rebuttal-Revision), a consensus-based multi-agent system for Text-to-SQL tasks. $R^3$ outperforms the existing single LLM Text-to-SQL systems as well as the multi-agent Text-to-SQL systems by $1.3\%$ to $8.1\%$ on Spider and Bird. Surprisingly, we find that for Llama-3-8B, $R^3$ outperforms chain-of-thought prompting by over 20\%, even outperforming GPT-3.5 on the development set of Spider.


LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them

arXiv.org Artificial Intelligence

The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-\textit{test} containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.