Goto

Collaborating Authors

 Jiang, Feijun


PMMT: Preference Alignment in Multilingual Machine Translation via LLM Distillation

arXiv.org Artificial Intelligence

Translation is important for cross-language communication, and many efforts have been made to improve its accuracy. However, less investment is conducted in aligning translations with human preferences, such as translation tones or styles. In this paper, a new method is proposed to effectively generate large-scale multilingual parallel corpora with specific translation preferences using Large Language Models (LLMs). Meanwhile, an automatic pipeline is designed to distill human preferences into smaller Machine Translation (MT) models for efficiently and economically supporting large-scale calls in online services. Experiments indicate that the proposed method takes the lead in translation tasks with aligned human preferences by a large margin. Meanwhile, on popular public benchmarks like WMT and Flores, on which our models were not trained, the proposed method also shows a competitive performance compared to SOTA works.


CO3: Low-resource Contrastive Co-training for Generative Conversational Query Rewrite

arXiv.org Artificial Intelligence

Generative query rewrite generates reconstructed query rewrites using the conversation history while rely heavily on gold rewrite pairs that are expensive to obtain. Recently, few-shot learning is gaining increasing popularity for this task, whereas these methods are sensitive to the inherent noise due to limited data size. Besides, both attempts face performance degradation when there exists language style shift between training and testing cases. To this end, we study low-resource generative conversational query rewrite that is robust to both noise and language style shift. The core idea is to utilize massive unlabeled data to make further improvements via a contrastive co-training paradigm. Specifically, we co-train two dual models (namely Rewriter and Simplifier) such that each of them provides extra guidance through pseudo-labeling for enhancing the other in an iterative manner. We also leverage contrastive learning with data augmentation, which enables our model pay more attention on the truly valuable information than the noise. Extensive experiments demonstrate the superiority of our model under both few-shot and zero-shot scenarios. We also verify the better generalization ability of our model when encountering language style shift.


A unified multichannel far-field speech recognition system: combining neural beamforming with attention based end-to-end model

arXiv.org Artificial Intelligence

Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.


Improving Audio-Visual Speech Recognition by Lip-Subword Correlation Based Visual Pre-training and Cross-Modal Fusion Encoder

arXiv.org Artificial Intelligence

In recent research, slight performance improvement is observed from automatic speech recognition systems to audio-visual speech recognition systems in the end-to-end framework with low-quality videos. Unmatching convergence rates and specialized input representations between audio and visual modalities are considered to cause the problem. In this paper, we propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework. First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes. This enables accurate alignment of video and audio streams during visual model pre-training and cross-modal fusion. Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers to make full use of modality complementarity. Experiments on the MISP2021-AVSR data set show the effectiveness of the two proposed techniques. Together, using only a relatively small amount of training data, the final system achieves better performances than state-of-the-art systems with more complex front-ends and back-ends.


NER-BERT: A Pre-trained Model for Low-Resource Entity Tagging

arXiv.org Artificial Intelligence

Named entity recognition (NER) models generally perform poorly when large training datasets are unavailable for low-resource domains. Recently, pre-training a large-scale language model has become a promising direction for coping with the data scarcity issue. However, the underlying discrepancies between the language modeling and NER task could limit the models' performance, and pre-training for the NER task has rarely been studied since the collected NER datasets are generally small or large but with low quality. In this paper, we construct a massive NER corpus with a relatively high quality, and we pre-train a NER-BERT model based on the created dataset. Experimental results show that our pre-trained model can significantly outperform BERT (Devlin et al., 2019) as well as other strong baselines in low-resource scenarios across nine diverse domains. Moreover, a visualization of entity representations further indicates the effectiveness of NER-BERT for categorizing a variety of entities.