Goto

Collaborating Authors

 Jia, Yanwei


Accuracy of Discretely Sampled Stochastic Policies in Continuous-time Reinforcement Learning

arXiv.org Artificial Intelligence

Stochastic policies are widely used in continuous-time reinforcement learning algorithms. However, executing a stochastic policy and evaluating its performance in a continuous-time environment remain open challenges. This work introduces and rigorously analyzes a policy execution framework that samples actions from a stochastic policy at discrete time points and implements them as piecewise constant controls. We prove that as the sampling mesh size tends to zero, the controlled state process converges weakly to the dynamics with coefficients aggregated according to the stochastic policy. We explicitly quantify the convergence rate based on the regularity of the coefficients and establish an optimal first-order convergence rate for sufficiently regular coefficients. Additionally, we show that the same convergence rates hold with high probability concerning the sampling noise, and further establish a $1/2$-order almost sure convergence when the volatility is not controlled. Building on these results, we analyze the bias and variance of various policy evaluation and policy gradient estimators based on discrete-time observations. Our results provide theoretical justification for the exploratory stochastic control framework in [H. Wang, T. Zariphopoulou, and X.Y. Zhou, J. Mach. Learn. Res., 21 (2020), pp. 1-34].


Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study

arXiv.org Artificial Intelligence

We study continuous-time mean--variance portfolio selection in markets where stock prices are diffusion processes driven by observable factors that are also diffusion processes yet the coefficients of these processes are unknown. Based on the recently developed reinforcement learning (RL) theory for diffusion processes, we present a general data-driven RL algorithm that learns the pre-committed investment strategy directly without attempting to learn or estimate the market coefficients. For multi-stock Black--Scholes markets without factors, we further devise a baseline algorithm and prove its performance guarantee by deriving a sublinear regret bound in terms of Sharpe ratio. For performance enhancement and practical implementation, we modify the baseline algorithm into four variants, and carry out an extensive empirical study to compare their performance, in terms of a host of common metrics, with a large number of widely used portfolio allocation strategies on S\&P 500 constituents. The results demonstrate that the continuous-time RL strategies are consistently among the best especially in a volatile bear market, and decisively outperform the model-based continuous-time counterparts by significant margins.


Continuous-time Risk-sensitive Reinforcement Learning via Quadratic Variation Penalty

arXiv.org Artificial Intelligence

The risk-sensitive objective arises either as the agent's risk attitude or as a distributionally robust approach against the model uncertainty. Owing to the martingale perspective in Jia and Zhou (2023), the risk-sensitive RL problem is shown to be equivalent to ensuring the martingale property of a process involving both the value function and the q-function, augmented by an additional penalty term: the quadratic variation of the value process, capturing the variability of the value-to-go along the trajectory. This characterization allows for the straightforward adaptation of existing RL algorithms developed for non-risk-sensitive scenarios to incorporate risk sensitivity by adding the realized variance of the value process. Additionally, I highlight that the conventional policy gradient representation is inadequate for risk-sensitive problems due to the nonlinear nature of quadratic variation; however, q-learning offers a solution and extends to infinite horizon settings. Finally, I prove the convergence of the proposed algorithm for Merton's investment problem and quantify the impact of temperature parameter on the behavior of the learning procedure. I also conduct simulation experiments to demonstrate how risk-sensitive RL improves the finite-sample performance in the linear-quadratic control problem.


Learning Merton's Strategies in an Incomplete Market: Recursive Entropy Regularization and Biased Gaussian Exploration

arXiv.org Artificial Intelligence

We study Merton's expected utility maximization problem in an incomplete market, characterized by a factor process in addition to the stock price process, where all the model primitives are unknown. We take the reinforcement learning (RL) approach to learn optimal portfolio policies directly by exploring the unknown market, without attempting to estimate the model parameters. Based on the entropy-regularization framework for general continuous-time RL formulated in Wang et al. (2020), we propose a recursive weighting scheme on exploration that endogenously discounts the current exploration reward by the past accumulative amount of exploration. Such a recursive regularization restores the optimality of Gaussian exploration. However, contrary to the existing results, the optimal Gaussian policy turns out to be biased in general, due to the interwinding needs for hedging and for exploration. We present an asymptotic analysis of the resulting errors to show how the level of exploration affects the learned policies. Furthermore, we establish a policy improvement theorem and design several RL algorithms to learn Merton's optimal strategies. At last, we carry out both simulation and empirical studies with a stochastic volatility environment to demonstrate the efficiency and robustness of the RL algorithms in comparison to the conventional plug-in method.


q-Learning in Continuous Time

arXiv.org Artificial Intelligence

We study the continuous-time counterpart of Q-learning for reinforcement learning (RL) under the entropy-regularized, exploratory diffusion process formulation introduced by Wang et al. (2020). As the conventional (big) Q-function collapses in continuous time, we consider its first-order approximation and coin the term ``(little) q-function". This function is related to the instantaneous advantage rate function as well as the Hamiltonian. We develop a ``q-learning" theory around the q-function that is independent of time discretization. Given a stochastic policy, we jointly characterize the associated q-function and value function by martingale conditions of certain stochastic processes, in both on-policy and off-policy settings. We then apply the theory to devise different actor-critic algorithms for solving underlying RL problems, depending on whether or not the density function of the Gibbs measure generated from the q-function can be computed explicitly. One of our algorithms interprets the well-known Q-learning algorithm SARSA, and another recovers a policy gradient (PG) based continuous-time algorithm proposed in Jia and Zhou (2022b). Finally, we conduct simulation experiments to compare the performance of our algorithms with those of PG-based algorithms in Jia and Zhou (2022b) and time-discretized conventional Q-learning algorithms.