Jia, Su
Clustered Switchback Experiments: Near-Optimal Rates Under Spatiotemporal Interference
Jia, Su, Kallus, Nathan, Yu, Christina Lee
We consider experimentation in the presence of non-stationarity, inter-unit (spatial) interference, and carry-over effects (temporal interference), where we wish to estimate the global average treatment effect (GATE), the difference between average outcomes having exposed all units at all times to treatment or to control. We suppose spatial interference is described by a graph, where a unit's outcome depends on its neighborhood's treatment assignments, and that temporal interference is described by a hidden Markov decision process, where the transition kernel under either treatment (action) satisfies a rapid mixing condition. We propose a clustered switchback design, where units are grouped into clusters and time steps are grouped into blocks and each whole cluster-block combination is assigned a single random treatment. Under this design, we show that for graphs that admit good clustering, a truncated exposure-mapping Horvitz-Thompson estimator achieves $\tilde O(1/NT)$ mean-squared error (MSE), matching an $\Omega(1/NT)$ lower bound up to logarithmic terms. Our results simultaneously generalize the $N=1$ setting of Hu, Wager 2022 (and improves on the MSE bound shown therein for difference-in-means estimators) as well as the $T=1$ settings of Ugander et al 2013 and Leung 2022. Simulation studies validate the favorable performance of our approach.
Multi-Armed Bandits with Interference
Jia, Su, Frazier, Peter, Kallus, Nathan
Experimentation with interference poses a significant challenge in contemporary online platforms. Prior research on experimentation with interference has concentrated on the final output of a policy. The cumulative performance, while equally crucial, is less well understood. To address this gap, we introduce the problem of {\em Multi-armed Bandits with Interference} (MABI), where the learner assigns an arm to each of $N$ experimental units over a time horizon of $T$ rounds. The reward of each unit in each round depends on the treatments of {\em all} units, where the influence of a unit decays in the spatial distance between units. Furthermore, we employ a general setup wherein the reward functions are chosen by an adversary and may vary arbitrarily across rounds and units. We first show that switchback policies achieve an optimal {\em expected} regret $\tilde O(\sqrt T)$ against the best fixed-arm policy. Nonetheless, the regret (as a random variable) for any switchback policy suffers a high variance, as it does not account for $N$. We propose a cluster randomization policy whose regret (i) is optimal in {\em expectation} and (ii) admits a high probability bound that vanishes in $N$.
Optimal Decision Tree with Noisy Outcomes
Jia, Su, Navidi, Fatemeh, Nagarajan, Viswanath, Ravi, R.
In pool-based active learning, the learner is given an unlabeled data set and aims to efficiently learn the unknown hypothesis by querying the labels of the data points. This can be formulated as the classical Optimal Decision Tree (ODT) problem: Given a set of tests, a set of hypotheses, and an outcome for each pair of test and hypothesis, our objective is to find a low-cost testing procedure (i.e., decision tree) that identifies the true hypothesis. This optimization problem has been extensively studied under the assumption that each test generates a deterministic outcome. However, in numerous applications, for example, clinical trials, the outcomes may be uncertain, which renders the ideas from the deterministic setting invalid. In this work, we study a fundamental variant of the ODT problem in which some test outcomes are noisy, even in the more general case where the noise is persistent, i.e., repeating a test gives the same noisy output. Our approximation algorithms provide guarantees that are nearly best possible and hold for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades continuously with this number. We numerically evaluated our algorithms for identifying toxic chemicals and learning linear classifiers, and observed that our algorithms have costs very close to the information-theoretic minimum.
Short-lived High-volume Multi-A(rmed)/B(andits) Testing
Jia, Su, Li, Andrew, Ravi, R., Oli, Nishant, Duff, Paul, Anderson, Ian
Modern platforms leverage randomized experiments to make informed decisions from a given set of items (``treatments''). As a particularly challenging scenario, these items may (i) arrive in high volume, with thousands of new items being released per hour, and (ii) have short lifetime, say, due to the item's transient nature or underlying non-stationarity that impels the platform to perceive the same item as distinct copies over time. Thus motivated, we study a Bayesian multiple-play bandit problem that encapsulates the key features of the multivariate testing (or ``multi-A/B testing'') problem with a high volume of short-lived arms. In each round, a set of $k$ arms arrive, each available for $w$ rounds. Without knowing the mean reward for each arm, the learner selects a multiset of $n$ arms and immediately observes their realized rewards. We aim to minimize the loss due to not knowing the mean rewards, averaged over instances generated from a given prior distribution. We show that when $k = O(n^\rho)$ for some constant $\rho>0$, our proposed policy has $\tilde O(n^{-\min \{\rho, \frac 12 (1+\frac 1w)^{-1}\}})$ loss on a sufficiently large class of prior distributions. We complement this result by showing that every policy suffers $\Omega (n^{-\min \{\rho, \frac 12\}})$ loss on the same class of distributions. We further validate the effectiveness of our policy through a large-scale field experiment on {\em Glance}, a content-card-serving platform that faces exactly the above challenge. A simple variant of our policy outperforms the platform's current recommender by 4.32\% in total duration and 7.48\% in total number of click-throughs.
Markdown Pricing Under an Unknown Parametric Demand Model
Jia, Su, Li, Andrew, Ravi, R.
Consider a single-product revenue-maximization problem where the seller monotonically decreases the price in $n$ rounds with an unknown demand model coming from a given family. Without monotonicity, the minimax regret is $\tilde O(n^{2/3})$ for the Lipschitz demand family and $\tilde O(n^{1/2})$ for a general class of parametric demand models. With monotonicity, the minimax regret is $\tilde O(n^{3/4})$ if the revenue function is Lipschitz and unimodal. However, the minimax regret for parametric families remained open. In this work, we provide a complete settlement for this fundamental problem. We introduce the crossing number to measure the complexity of a family of demand functions. In particular, the family of degree-$k$ polynomials has a crossing number $k$. Based on conservatism under uncertainty, we present (i) a policy with an optimal $\Theta(\log^2 n)$ regret for families with crossing number $k=0$, and (ii) another policy with an optimal $\tilde \Theta(n^{k/(k+1)})$ regret when $k\ge 1$. These bounds are asymptotically higher than the $\tilde O(\log n)$ and $\tilde \Theta(\sqrt n)$ minimax regret for the same families without the monotonicity constraint.
From Stream to Pool: Dynamic Pricing Beyond i.i.d. Arrivals
Cui, Titing, Jia, Su, Lavastida, Thomas
The dynamic pricing problem has been extensively studied under the \textbf{stream} model: A stream of customers arrives sequentially, each with an independently and identically distributed valuation. However, this formulation is not entirely reflective of the real world. In many scenarios, high-valuation customers tend to make purchases earlier and leave the market, leading to a \emph{shift} in the valuation distribution. Thus motivated, we consider a model where a \textbf{pool} of $n$ non-strategic unit-demand customers interact repeatedly with the seller. Each customer monitors the price intermittently according to an independent Poisson process and makes a purchase if the observed price is lower than her \emph{private} valuation, whereupon she leaves the market permanently. We present a minimax \emph{optimal} algorithm that efficiently computes a non-adaptive policy which guarantees a $1/k$ fraction of the optimal revenue, given any set of $k$ prices. Moreover, we present an adaptive \emph{learn-then-earn} policy based on a novel \emph{debiasing} approach, and prove an $\tilde O(kn^{3/4})$ regret bound. We further improve the bound to $\tilde O(k^{3/4} n^{3/4})$ using martingale concentration inequalities.
Smooth Non-Stationary Bandits
Jia, Su, Xie, Qian, Kallus, Nathan, Frazier, Peter I.
In many applications of online decision making, the environment is non-stationary and it is therefore crucial to use bandit algorithms that handle changes. Most existing approaches are designed to protect against non-smooth changes, constrained only by total variation or Lipschitzness over time, where they guarantee $\tilde \Theta(T^{2/3})$ regret. However, in practice environments are often changing {\bf smoothly}, so such algorithms may incur higher-than-necessary regret in these settings and do not leverage information on the rate of change. We study a non-stationary two-armed bandits problem where we assume that an arm's mean reward is a $\beta$-H\"older function over (normalized) time, meaning it is $(\beta-1)$-times Lipschitz-continuously differentiable. We show the first separation between the smooth and non-smooth regimes by presenting a policy with $\tilde O(T^{3/5})$ regret for $\beta=2$. We complement this result by an $\Omg(T^{(\beta+1)/(2\beta+1)})$ lower bound for any integer $\beta\ge 1$, which matches our upper bound for $\beta=2$.
Approximation Algorithms for Active Sequential Hypothesis Testing
Gan, Kyra, Jia, Su, Li, Andrew
In the problem of active sequential hypotheses testing (ASHT), a learner seeks to identify the true hypothesis $h^*$ from among a set of hypotheses $H$. The learner is given a set of actions and knows the outcome distribution of any action under any true hypothesis. While repeatedly playing the entire set of actions suffices to identify $h^*$, a cost is incurred with each action. Thus, given a target error $\delta>0$, the goal is to find the minimal cost policy for sequentially selecting actions that identify $h^*$ with probability at least $1 - \delta$. This paper provides the first approximation algorithms for ASHT, under two types of adaptivity. First, a policy is partially adaptive if it fixes a sequence of actions in advance and adaptively decides when to terminate and what hypothesis to return. Under partial adaptivity, we provide an $O\big(s^{-1}(1+\log_{1/\delta}|H|)\log (s^{-1}|H| \log |H|)\big)$-approximation algorithm, where $s$ is a natural separation parameter between the hypotheses. Second, a policy is fully adaptive if action selection is allowed to depend on previous outcomes. Under full adaptivity, we provide an $O(s^{-1}\log (|H|/\delta)\log |H|)$-approximation algorithm. We numerically investigate the performance of our algorithms using both synthetic and real-world data, showing that our algorithms outperform a previously proposed heuristic policy.
Deep Manifold Learning of Symmetric Positive Definite Matrices with Application to Face Recognition
Dong, Zhen (Beijing Institute of Technology) | Jia, Su (State University of New York at Stony Brook) | Zhang, Chi (Beijing Institute of Technology) | Pei, Mingtao (Beijing Institute of Technology) | Wu, Yuwei (Beijing Institute of Technology)
In this paper, we aim to construct a deep neural network which embeds high dimensional symmetric positive definite (SPD) matrices into a more discriminative low dimensional SPD manifold. To this end, we develop two types of basic layers: a 2D fully connected layer which reduces the dimensionality of the SPD matrices, and a symmetrically clean layer which achieves non-linear mapping. Specifically, we extend the classical fully connected layer such that it is suitable for SPD matrices, and we further show that SPD matrices with symmetric pair elements setting zero operations are still symmetric positive definite. Finally, we complete the construction of the deep neural network for SPD manifold learning by stacking the two layers. Experiments on several face datasets demonstrate the effectiveness of the proposed method.
Face Video Retrieval via Deep Learning of Binary Hash Representations
Dong, Zhen (Beijing Institute of Technology) | Jia, Su (Stony Brook University) | Wu, Tianfu (Beijing University of Posts and Telecommunications and University of California, Los Angeles) | Pei, Mingtao (Beijing Institute of Technology)
Retrieving faces from large mess of videos is an attractive research topic with wide range of applications. Its challenging problems are large intra-class variations, and tremendous time and space complexity. In this paper, we develop a new deep convolutional neural network (deep CNN) to learn discriminative and compact binary representations of faces for face video retrieval. The network integrates feature extraction and hash learning into a unified optimization framework for the optimal compatibility of feature extractor and hash functions. In order to better initialize the network, the low-rank discriminative binary hashing is proposed to pre-learn hash functions during the training procedure. Our method achieves excellent performances on two challenging TV-Series datasets.