Goto

Collaborating Authors

 Ji, Xiang


SCOPE-DTI: Semi-Inductive Dataset Construction and Framework Optimization for Practical Usability Enhancement in Deep Learning-Based Drug Target Interaction Prediction

arXiv.org Artificial Intelligence

Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.


MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations

arXiv.org Artificial Intelligence

Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.


Improving Vision-Language-Action Model with Online Reinforcement Learning

arXiv.org Artificial Intelligence

Recent studies have successfully integrated large vision-language models (VLMs) into low-level robotic control by supervised fine-tuning (SFT) with expert robotic datasets, resulting in what we term vision-language-action (VLA) models. Although the VLA models are powerful, how to improve these large models during interaction with environments remains an open question. In this paper, we explore how to further improve these VLA models via Reinforcement Learning (RL), a commonly used fine-tuning technique for large models. However, we find that directly applying online RL to large VLA models presents significant challenges, including training instability that severely impacts the performance of large models, and computing burdens that exceed the capabilities of most local machines. To address these challenges, we propose iRe-VLA framework, which iterates between Reinforcement Learning and Supervised Learning to effectively improve VLA models, leveraging the exploratory benefits of RL while maintaining the stability of supervised learning. Experiments in two simulated benchmarks and a real-world manipulation suite validate the effectiveness of our method.


Self-Play with Adversarial Critic: Provable and Scalable Offline Alignment for Language Models

arXiv.org Artificial Intelligence

This work studies the challenge of aligning large language models (LLMs) with offline preference data. We focus on alignment by Reinforcement Learning from Human Feedback (RLHF) in particular. While popular preference optimization methods exhibit good empirical performance in practice, they are not theoretically guaranteed to converge to the optimal policy and can provably fail when the data coverage is sparse by classical offline reinforcement learning (RL) results. On the other hand, a recent line of work has focused on theoretically motivated preference optimization methods with provable guarantees, but these are not computationally efficient for large-scale applications like LLM alignment. To bridge this gap, we propose SPAC, a new offline preference optimization method with self-play, inspired by the on-average pessimism technique from the offline RL literature, to be the first provable and scalable approach to LLM alignment. We both provide theoretical analysis for its convergence under single-policy concentrability for the general function approximation setting and demonstrate its competitive empirical performance for LLM alignment on a 7B Mistral model with Open LLM Leaderboard evaluations.


Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time

arXiv.org Machine Learning

A crucial problem in reinforcement learning is learning the optimal policy. We study this in tabular infinite-horizon discounted Markov decision processes under the online setting. The existing algorithms either fail to achieve regret optimality or have to incur a high memory and computational cost. In addition, existing optimal algorithms all require a long burn-in time in order to achieve optimal sample efficiency, i.e., their optimality is not guaranteed unless sample size surpasses a high threshold. We address both open problems by introducing a model-free algorithm that employs variance reduction and a novel technique that switches the execution policy in a slow-yet-adaptive manner. This is the first regret-optimal model-free algorithm in the discounted setting, with the additional benefit of a low burn-in time.


Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems

arXiv.org Machine Learning

For a real-world decision-making problem, the reward function often needs to be engineered or learned. A popular approach is to utilize human feedback to learn a reward function for training. The most straightforward way to do so is to ask humans to provide ratings for state-action pairs on an absolute scale and take these ratings as reward samples directly. Another popular way is to ask humans to rank a small set of state-action pairs by preference and learn a reward function from these preference data. Recently, preference-based methods have demonstrated substantial success in empirical applications such as InstructGPT. In this work, we develop a theoretical comparison between these human feedback approaches in offline contextual bandits and show how human bias and uncertainty in feedback modelings can affect the theoretical guarantees of these approaches. Through this, our results seek to provide a theoretical explanation for the empirical successes of preference-based methods from a modeling perspective.


Sample Complexity of Preference-Based Nonparametric Off-Policy Evaluation with Deep Networks

arXiv.org Machine Learning

A recently popular approach to solving reinforcement learning is with data from human preferences. In fact, human preference data are now used with classic reinforcement learning algorithms such as actor-critic methods, which involve evaluating an intermediate policy over a reward learned from human preference data with distribution shift, known as off-policy evaluation (OPE). Such algorithm includes (i) learning reward function from human preference dataset, and (ii) learning expected cumulative reward of a target policy. Despite the huge empirical success, existing OPE methods with preference data often lack theoretical understanding and rely heavily on heuristics. In this paper, we study the sample efficiency of OPE with human preference and establish a statistical guarantee for it. Specifically, we approach OPE by learning the value function by fitted-Q-evaluation with a deep neural network. By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process and obtain a sample-efficient estimator without suffering from the curse of high data ambient dimensionality. Under the assumption of high reward smoothness, our results \textit{almost align with the classical OPE results with observable reward data}. To the best of our knowledge, this is the first result that establishes a \textit{provably efficient} guarantee for off-policy evaluation with RLHF.


Towards Deep Learning Models Resistant to Transfer-based Adversarial Attacks via Data-centric Robust Learning

arXiv.org Artificial Intelligence

Transfer-based adversarial attacks raise a severe threat to real-world deep learning systems since they do not require access to target models. Adversarial training (AT), which is recognized as the strongest defense against white-box attacks, has also guaranteed high robustness to (black-box) transfer-based attacks. However, AT suffers from heavy computational overhead since it optimizes the adversarial examples during the whole training process. In this paper, we demonstrate that such heavy optimization is not necessary for AT against transfer-based attacks. Instead, a one-shot adversarial augmentation prior to training is sufficient, and we name this new defense paradigm Data-centric Robust Learning (DRL). Our experimental results show that DRL outperforms widely-used AT techniques (e.g., PGD-AT, TRADES, EAT, and FAT) in terms of black-box robustness and even surpasses the top-1 defense on RobustBench when combined with diverse data augmentations and loss regularizations. We also identify other benefits of DRL, for instance, the model generalization capability and robust fairness.


Sample Complexity of Neural Policy Mirror Descent for Policy Optimization on Low-Dimensional Manifolds

arXiv.org Machine Learning

Policy-based algorithms equipped with deep neural networks have achieved great success in solving high-dimensional policy optimization problems in reinforcement learning. However, current analyses cannot explain why they are resistant to the curse of dimensionality. In this work, we study the sample complexity of the neural policy mirror descent (NPMD) algorithm with convolutional neural networks (CNN) as function approximators. Motivated by the empirical observation that many high-dimensional environments have state spaces possessing low-dimensional structures, such as those taking images as states, we consider the state space to be a $d$-dimensional manifold embedded in the $D$-dimensional Euclidean space with intrinsic dimension $d\ll D$. We show that in each iteration of NPMD, both the value function and the policy can be well approximated by CNNs. The approximation errors are controlled by the size of the networks, and the smoothness of the previous networks can be inherited. As a result, by properly choosing the network size and hyperparameters, NPMD can find an $\epsilon$-optimal policy with $\widetilde{O}(\epsilon^{-\frac{d}{\alpha}-2})$ samples in expectation, where $\alpha\in(0,1]$ indicates the smoothness of environment. Compared to previous work, our result exhibits that NPMD can leverage the low-dimensional structure of state space to escape from the curse of dimensionality, providing an explanation for the efficacy of deep policy-based algorithms.


Hard Adversarial Example Mining for Improving Robust Fairness

arXiv.org Artificial Intelligence

Adversarial training (AT) is widely considered the stateof-the-art Various approaches have been proposed to enhance the technique for improving the robustness of deep defense capabilities of DNNs against AEs. Adversarial neural networks (DNNs) against adversarial examples training (AT) has been demonstrated to be one of the (AE). Nevertheless, recent studies have revealed that adversarially most effective strategies [11]. Nevertheless, recent research trained models are prone to unfairness problems, [26, 23] have observed that the adversarially trained models restricting their applicability. In this paper, we empirically usually suffer from a serious unfairness problem, i.e., observe that this limitation may be attributed to serious adversarial there is a noticeable disparity in accuracy between different confidence overfitting, i.e., certain adversarial examples classes, seriously restricting their applicability in real-world with overconfidence. To alleviate this problem, we scenarios. Although some solutions have been proposed, propose HAM, a straightforward yet effective framework via the average robustness fairness score is still low and needs adaptive Hard Adversarial example Mining. HAM concentrates to be urgently addressed. On the other hand, several recent on mining hard adversarial examples while discarding studies [29, 17, 25] have focused on achieving efficient adversarial the easy ones in an adaptive fashion.