Ji, Jiayi
ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
Huang, Oucheng, Ma, Yuhang, Zhao, Zeng, Wu, Mingrui, Ji, Jiayi, Zhang, Rongsheng, Hu, Zhipeng, Sun, Xiaoshuai, Ji, Rongrong
ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.
IPDN: Image-enhanced Prompt Decoding Network for 3D Referring Expression Segmentation
Chen, Qi, Wu, Changli, Ji, Jiayi, Ma, Yiwei, Yang, Danni, Sun, Xiaoshuai
3D Referring Expression Segmentation (3D-RES) aims to segment point cloud scenes based on a given expression. However, existing 3D-RES approaches face two major challenges: feature ambiguity and intent ambiguity. Feature ambiguity arises from information loss or distortion during point cloud acquisition due to limitations such as lighting and viewpoint. Intent ambiguity refers to the model's equal treatment of all queries during the decoding process, lacking top-down task-specific guidance. In this paper, we introduce an Image enhanced Prompt Decoding Network (IPDN), which leverages multi-view images and task-driven information to enhance the model's reasoning capabilities. To address feature ambiguity, we propose the Multi-view Semantic Embedding (MSE) module, which injects multi-view 2D image information into the 3D scene and compensates for potential spatial information loss. To tackle intent ambiguity, we designed a Prompt-Aware Decoder (PAD) that guides the decoding process by deriving task-driven signals from the interaction between the expression and visual features. Comprehensive experiments demonstrate that IPDN outperforms the state-ofthe-art by 1.9 and 4.2 points in mIoU metrics on the 3D-RES and 3D-GRES tasks, respectively.
Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension
Luo, Yongdong, Zheng, Xiawu, Yang, Xiao, Li, Guilin, Lin, Haojia, Huang, Jinfa, Ji, Jiayi, Chao, Fei, Luo, Jiebo, Ji, Rongrong
Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.
Synergistic Dual Spatial-aware Generation of Image-to-Text and Text-to-Image
Zhao, Yu, Fei, Hao, Li, Xiangtai, Qin, Libo, Ji, Jiayi, Zhu, Hongyuan, Zhang, Meishan, Zhang, Min, Wei, Jianguo
In the visual spatial understanding (VSU) area, spatial image-to-text (SI2T) and spatial text-to-image (ST2I) are two fundamental tasks that appear in dual form. Existing methods for standalone SI2T or ST2I perform imperfectly in spatial understanding, due to the difficulty of 3D-wise spatial feature modeling. In this work, we consider modeling the SI2T and ST2I together under a dual learning framework. During the dual framework, we then propose to represent the 3D spatial scene features with a novel 3D scene graph (3DSG) representation that can be shared and beneficial to both tasks. Further, inspired by the intuition that the easier 3D$\to$image and 3D$\to$text processes also exist symmetrically in the ST2I and SI2T, respectively, we propose the Spatial Dual Discrete Diffusion (SD$^3$) framework, which utilizes the intermediate features of the 3D$\to$X processes to guide the hard X$\to$3D processes, such that the overall ST2I and SI2T will benefit each other. On the visual spatial understanding dataset VSD, our system outperforms the mainstream T2I and I2T methods significantly. Further in-depth analysis reveals how our dual learning strategy advances.
HRSAM: Efficiently Segment Anything in High-Resolution Images
Huang, You, Lai, Wenbin, Ji, Jiayi, Cao, Liujuan, Zhang, Shengchuan, Ji, Rongrong
The Segment Anything Model (SAM) has significantly advanced interactive segmentation but struggles with high-resolution images crucial for high-precision segmentation. This is primarily due to the quadratic space complexity of SAM-implemented attention and the length extrapolation issue in common global attention. This study proposes HRSAM that integrates Flash Attention and incorporates Plain, Shifted and newly proposed Cycle-scan Window (PSCWin) attention to address these issues. The shifted window attention is redesigned with padding to maintain consistent window sizes, enabling effective length extrapolation. The cycle-scan window attention adopts the recently developed State Space Models (SSMs) to ensure global information exchange with minimal computational overhead. Such window-based attention allows HRSAM to perform effective attention computations on scaled input images while maintaining low latency. Moreover, we further propose HRSAM++ that additionally employs a multi-scale strategy to enhance HRSAM's performance. The experiments on the high-precision segmentation datasets HQSeg44K and DAVIS show that high-resolution inputs enable the SAM-distilled HRSAM models to outperform the teacher model while maintaining lower latency. Compared to the SOTAs, HRSAM achieves a 1.56 improvement in interactive segmentation's NoC95 metric with only 31% of the latency. HRSAM++ further enhances the performance, achieving a 1.63 improvement in NoC95 with just 38% of the latency.
M3PS: End-to-End Multi-Grained Multi-Modal Attribute-Aware Product Summarization in E-commerce
Chen, Tao, Lin, Ze, Li, Hui, Ji, Jiayi, Zhou, Yiyi, Li, Guanbin, Ji, Rongrong
Given the long textual product information and the product image, Multi-Modal Product Summarization (MMPS) aims to attract customers' interest and increase their desire to purchase by highlighting product characteristics with a short textual summary. Existing MMPS methods have achieved promising performance. Nevertheless, there still exist several problems: 1) lack end-to-end product summarization, 2) lack multi-grained multi-modal modeling, and 3) lack multi-modal attribute modeling. To address these issues, we propose an end-to-end multi-grained multi-modal attribute-aware product summarization method (M3PS) for generating high-quality product summaries in e-commerce. M3PS jointly models product attributes and generates product summaries. Meanwhile, we design several multi-grained multi-modal tasks to better guide the multi-modal learning of M3PS. Furthermore, we model product attributes based on both text and image modalities so that multi-modal product characteristics can be manifested in the generated summaries. Extensive experiments on a real large-scale Chinese e-commence dataset demonstrate that our model outperforms state-of-the-art product summarization methods w.r.t. several summarization metrics.
Variable selection with missing data in both covariates and outcomes: Imputation and machine learning
Hu, Liangyuan, Lin, Jung-Yi Joyce, Ji, Jiayi
The missing data issue is ubiquitous in health studies. Variable selection in the presence of both missing covariates and outcomes is an important statistical research topic but has been less studied. Existing literature focuses on parametric regression techniques that provide direct parameter estimates of the regression model. In practice, parametric regression models are often sub-optimal for variable selection because they are susceptible to misspecification. Machine learning methods considerably weaken the parametric assumptions and increase modeling flexibility, but do not provide as naturally defined variable importance measure as the covariate effect native to parametric models. We investigate a general variable selection approach when both the covariates and outcomes can be missing at random and have general missing data patterns. This approach exploits the flexibility of machine learning modeling techniques and bootstrap imputation, which is amenable to nonparametric methods in which the covariate effects are not directly available. We conduct expansive simulations investigating the practical operating characteristics of the proposed variable selection approach, when combined with four tree-based machine learning methods, XGBoost, Random Forests, Bayesian Additive Regression Trees (BART) and Conditional Random Forests, and two commonly used parametric methods, lasso and backward stepwise selection. Numeric results show XGBoost and BART have the overall best performance across various settings. Guidance for choosing methods appropriate to the structure of the analysis data at hand are discussed. We further demonstrate the methods via a case study of risk factors for 3-year incidence of metabolic syndrome with data from the Study of Women's Health Across the Nation.
Estimating heterogeneous survival treatment effect in observational data using machine learning
Hu, Liangyuan, Ji, Jiayi, Li, Fan
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes, and have been relatively less vetted with survival outcomes. Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics, to which treatments need to be tailored. To evaluate the operating characteristics of recent survival machine learning methods for the estimation of TEH and inform better practice, we carry out a comprehensive simulation study representing a variety of confounded heterogeneous survival treatment effect settings and varying degrees of covariate overlap. Our results indicate that the nonparametric Bayesian Additive Regression Trees within the framework of accelerated failure time model (AFT-BART-NP) consistently carries the best performance, both in terms of bias and precision. Moreover, the credible interval estimators from AFT-BART-NP provide close to nominal frequentist coverage for the individual survival treatment effect when the covariate overlap is at least moderate. Under lack of overlap, where accurate estimation of the average treatment effect becomes challenging, the credible intervals from AFT-BART-NP still provide nominal frequentist coverage among units near the centroid of the propensity score distribution. Finally, we demonstrate the application of these machine learning methods through a comprehensive case study examining the heterogeneous survival effects of two radiotherapy approaches for localized high-risk prostate cancer.
Variational Structured Semantic Inference for Diverse Image Captioning
Chen, Fuhai, Ji, Rongrong, Ji, Jiayi, Sun, Xiaoshuai, Zhang, Baochang, Ge, Xuri, Wu, Yongjian, Huang, Feiyue, Wang, Yan
Despite the exciting progress in image captioning, generating diverse captions for a given image remains as an open problem. Existing methods typically apply generative models such as Variational Auto-Encoder to diversify the captions, which however neglect two key factors of diverse expression, i.e., the lexical diversity and the syntactic diversity. To model these two inherent diversities in image captioning, we propose a Variational Structured Semantic Inferring model (termed VSSI-cap) executed in a novel structured encoder-inferer-decoder schema. VSSI-cap mainly innovates in a novel structure, i.e., Variational Multi-modal Inferring tree (termed VarMI-tree). In particular, conditioned on the visual-textual features from the encoder, the VarMI-tree models the lexical and syntactic diversities by inferring their latent variables (with variations) in an approximate posterior inference guided by a visual semantic prior.