Goto

Collaborating Authors

 Jedema, Nicolaas


Tuning-Free Personalized Alignment via Trial-Error-Explain In-Context Learning

arXiv.org Artificial Intelligence

Language models are aligned to the collective voice of many, resulting in generic outputs that do not align with specific users' styles. In this work, we present Trial-Error-Explain In-Context Learning (TICL), a tuning-free method that personalizes language models for text generation tasks with fewer than 10 examples per user. TICL iteratively expands an in-context learning prompt via a trial-error-explain process, adding model-generated negative samples and explanations that provide fine-grained guidance towards a specific user's style. TICL achieves favorable win rates on pairwise comparisons with LLM-as-a-judge up to 91.5% against the previous state-of-the-art and outperforms competitive tuning-free baselines for personalized alignment tasks of writing emails, essays and news articles. Both lexical and qualitative analyses show that the negative samples and explanations enable language models to learn stylistic context more effectively and overcome the bias towards structural and formal phrases observed in their zero-shot outputs. By front-loading inference compute to create a user-specific in-context learning prompt that does not require extra generation steps at test time, TICL presents a novel yet simple approach for personalized alignment.


Familiarity: Better Evaluation of Zero-Shot Named Entity Recognition by Quantifying Label Shifts in Synthetic Training Data

arXiv.org Artificial Intelligence

Zero-shot named entity recognition (NER) is the task of detecting named entities of specific types (such as 'Person' or 'Medicine') without any training examples. Current research increasingly relies on large synthetic datasets, automatically generated to cover tens of thousands of distinct entity types, to train zero-shot NER models. However, in this paper, we find that these synthetic datasets often contain entity types that are semantically highly similar to (or even the same as) those in standard evaluation benchmarks. Because of this overlap, we argue that reported F1 scores for zero-shot NER overestimate the true capabilities of these approaches. Further, we argue that current evaluation setups provide an incomplete picture of zero-shot abilities since they do not quantify the label shift (i.e., the similarity of labels) between training and evaluation datasets. To address these issues, we propose Familiarity, a novel metric that captures both the semantic similarity between entity types in training and evaluation, as well as their frequency in the training data, to provide an estimate of label shift. It allows researchers to contextualize reported zero-shot NER scores when using custom synthetic training datasets. Further, it enables researchers to generate evaluation setups of various transfer difficulties for fine-grained analysis of zero-shot NER.


Speechworthy Instruction-tuned Language Models

arXiv.org Artificial Intelligence

Current instruction-tuned language models are exclusively trained with textual preference data and thus are often not aligned with the unique requirements of other modalities, such as speech. To better align language models with the speech domain, we explore (i) prompting strategies grounded in radio-industry best practices and (ii) preference learning using a novel speech-based preference data of 20K samples, generated with a wide spectrum of prompts that induce varying dimensions of speech-suitability and labeled by annotators who listen to response pairs. Both human and automatic evaluation show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs. Interestingly, we find that prompting and preference learning can be additive; combining them achieves the best win rates in head-to-head comparison, resulting in responses that are preferred or tied to the base model in 76.2% of comparisons on average. Lastly, we share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.