Goto

Collaborating Authors

 Janhunen, Tomi


Globally Interpretable Classifiers via Boolean Formulas with Dynamic Propositions

arXiv.org Artificial Intelligence

Interpretability and explainability are among the most important challenges of modern artificial intelligence, being mentioned even in various legislative sources. In this article, we develop a method for extracting immediately human interpretable classifiers from tabular data. The classifiers are given in the form of short Boolean formulas built with propositions that can either be directly extracted from categorical attributes or dynamically computed from numeric ones. Our method is implemented using Answer Set Programming. We investigate seven datasets and compare our results to ones obtainable by state-of-the-art classifiers for tabular data, namely, XGBoost and random forests. Over all datasets, the accuracies obtainable by our method are similar to the reference methods. The advantage of our classifiers in all cases is that they are very short and immediately human intelligible as opposed to the black-box nature of the reference methods.


Interpretable classifiers for tabular data via discretization and feature selection

arXiv.org Artificial Intelligence

Explainability and human interpretability are becoming an increasingly important part of research on machine learning. In addition to the immediate benefits of explanations and interpretability in scientific contexts, the capacity to provide explanations behind automated decisions has already been widely addressed also on the level of legislation. For example, the European General Data Protection Regulation [8] and California Consumer Privacy Act [4] both refer to the right of individuals to get explanations of automated decisions concerning them. This article investigates interpretability in the framework of tabular data. Tabular data is highly important for numerous scientific and real-life contexts, often even regarded as the most important form of data: see, e.g., [22, 2]. The aim of the current article is to introduce an efficient method for extracting highly interpretable binary classifiers from tabular data. While explainable AI (or XAI) methods custom-made for pictures and text cannot be readily used in the setting of tabular data [16], numerous succesful XAI methods for tabular data exist. See the survey [20] for an overview of XAI in relation to tabular data. The authors are given in the alphabetical order.


Short Boolean Formulas as Explanations in Practice

arXiv.org Artificial Intelligence

We investigate explainability via short Boolean formulas in the data model based on unary relations. As an explanation of length k, we take a Boolean formula of length k that minimizes the error with respect to the target attribute to be explained. We first provide novel quantitative bounds for the expected error in this scenario. We then also demonstrate how the setting works in practice by studying three concrete data sets. In each case, we calculate explanation formulas of different lengths using an encoding in Answer Set Programming. The most accurate formulas we obtain achieve errors similar to other methods on the same data sets. However, due to overfitting, these formulas are not necessarily ideal explanations, so we use cross validation to identify a suitable length for explanations. By limiting to shorter formulas, we obtain explanations that avoid overfitting but are still reasonably accurate and also, importantly, human interpretable.


Generalizing Level Ranking Constraints for Monotone and Convex Aggregates

arXiv.org Artificial Intelligence

In answer set programming (ASP), answer sets capture solutions to search problems of interest and thus the efficient computation of answer sets is of utmost importance. One viable implementation strategy is provided by translation-based ASP where logic programs are translated into other KR formalisms such as Boolean satisfiability (SAT), SAT modulo theories (SMT), and mixed-integer programming (MIP). Consequently, existing solvers can be harnessed for the computation of answer sets. Many of the existing translations rely on program completion and level rankings to capture the minimality of answer sets and default negation properly. In this work, we take level ranking constraints into reconsideration, aiming at their generalizations to cover aggregate-based extensions of ASP in more systematic way. By applying a number of program transformations, ranking constraints can be rewritten in a general form that preserves the structure of monotone and convex aggregates and thus offers a uniform basis for their incorporation into translation-based ASP. The results open up new possibilities for the implementation of translators and solver pipelines in practice.


Capturing (Optimal) Relaxed Plans with Stable and Supported Models of Logic Programs

arXiv.org Artificial Intelligence

We establish a novel relation between delete-free planning, an important task for the AI Planning community also known as relaxed planning, and logic programming. We show that given a planning problem, all subsets of actions that could be ordered to produce relaxed plans for the problem can be bijectively captured with stable models of a logic program describing the corresponding relaxed planning problem. We also consider the supported model semantics of logic programs, and introduce one causal and one diagnostic encoding of the relaxed planning problem as logic programs, both capturing relaxed plans with their supported models. Our experimental results show that these new encodings can provide major performance gain when computing optimal relaxed plans, with our diagnostic encoding outperforming state-of-the-art approaches to relaxed planning regardless of the given time limit when measured on a wide collection of STRIPS planning benchmarks.


Solution Enumeration by Optimality in Answer Set Programming

arXiv.org Artificial Intelligence

Given a combinatorial search problem, it may be highly useful to enumerate its (all) solutions besides just finding one solution, or showing that none exists. The same can be stated about optimal solutions if an objective function is provided. This work goes beyond the bare enumeration of optimal solutions and addresses the computational task of solution enumeration by optimality (SEO). This task is studied in the context of Answer Set Programming (ASP) where (optimal) solutions of a problem are captured with the answer sets of a logic program encoding the problem. Existing answer-set solvers already support the enumeration of all (optimal) answer sets. However, in this work, we generalize the enumeration of optimal answer sets beyond strictly optimal ones, giving rise to the idea of answer set enumeration in the order of optimality (ASEO). This approach is applicable up to the best k answer sets or in an unlimited setting, which amounts to a process of sorting answer sets based on the objective function. As the main contribution of this work, we present the first general algorithms for the aforementioned tasks of answer set enumeration. Moreover, we illustrate the potential use cases of ASEO. First, we study how efficiently access to the next-best solutions can be achieved in a number of optimization problems that have been formalized and solved in ASP. Second, we show that ASEO provides us with an effective sampling technique for Bayesian networks.


Allen's Interval Algebra Makes the Difference

arXiv.org Artificial Intelligence

Allen's Interval Algebra constitutes a framework for reaso n-ing about temporal information in a qualitative manner. In p articular, it uses intervals, i.e., pairs of endpoints, on the timeline to represent entities corresponding to actions, events, or tasks, and bi nary relations such as precedes and overlaps to encode the possible configurations between those entities. Allen's calculus has found its way in m any academic and industrial applications that involve, most commo nly, planning and scheduling, temporal databases, and healthcare. I n this paper, we present a novel encoding of Interval Algebra using answer -set programming (ASP) extended by difference constraints, i.e., th e fragment abbreviated as ASP(DL), and demonstrate its performance vi a a preliminary experimental evaluation. Although our ASP encoding i s presented in the case of Allen's calculus for the sake of clarity, we sug gest that analogous encodings can be devised for other point-based ca lculi, too.



The Answer Set Programming Paradigm

AI Magazine

In this article, we give an overview of the answer set programming paradigm, explain its strengths, and illustrate its main features in terms of examples and an application problem. In this article, we give an overview of the answer set programming paradigm, explain its strengths, and illustrate its main features in terms of examples and an application problem.


The Answer Set Programming Paradigm

AI Magazine

In addition, we illustrate the potential of ASP including molecular biology (Gebser et computational hardness of our application problem al. 2010a, 2010b), decision support system for space by explaining its connection to the NPcomplete shuttle controllers (Balduccini, Gelfond, and decision problem Exact-3-SAT.