Goto

Collaborating Authors

 Jang, Young Kyun


MATE: Meet At The Embedding -- Connecting Images with Long Texts

arXiv.org Artificial Intelligence

While advancements in Vision Language Models (VLMs) have significantly improved the alignment of visual and textual data, these models primarily focus on aligning images with short descriptive captions. This focus limits their ability to handle complex text interactions, particularly with longer texts such as lengthy captions or documents, which have not been extensively explored yet. In this paper, we introduce Meet At The Embedding (MATE), a novel approach that combines the capabilities of VLMs with Large Language Models (LLMs) to overcome this challenge without the need for additional image-long text pairs. Specifically, we replace the text encoder of the VLM with a pretrained LLM-based encoder that excels in understanding long texts. To bridge the gap between VLM and LLM, MATE incorporates a projection module that is trained in a multi-stage manner. It starts by aligning the embeddings from the VLM text encoder with those from the LLM using extensive text pairs. This module is then employed to seamlessly align image embeddings closely with LLM embeddings. We propose two new cross-modal retrieval benchmarks to assess the task of connecting images with long texts (lengthy captions / documents). Extensive experimental results demonstrate that MATE effectively connects images with long texts, uncovering diverse semantic relationships.


Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models

arXiv.org Artificial Intelligence

Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.


Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval

arXiv.org Artificial Intelligence

Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption that describes desired modifications to that image. Supervised CIR approaches have shown strong performance, but their reliance on expensive manually-annotated datasets restricts their scalability and broader applicability. To address these issues, previous studies have proposed pseudo-word token-based Zero-Shot CIR (ZS-CIR) methods, which utilize a projection module to map images to word tokens. However, we conjecture that this approach has a downside: the projection module distorts the original image representation and confines the resulting composed embeddings to the text-side. In order to resolve this, we introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations by identifying an intermediate embedding of both. Furthermore, we introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed. TAT closes the modality gap between images and text, making the Slerp process much more effective. Notably, the TAT method is not only efficient in terms of the scale of the training dataset and training time, but it also serves as an excellent initial checkpoint for training supervised CIR models, thereby highlighting its wider potential. The integration of the Slerp-based ZS-CIR with a TAT-tuned model enables our approach to deliver state-of-the-art retrieval performance across CIR benchmarks.


Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval

arXiv.org Artificial Intelligence

Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification. Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image. These specific triplets are not as commonly available as simple image-text pairs, limiting the widespread use of CIR and its scalability. On the other hand, zero-shot CIR can be relatively easily trained with image-caption pairs without considering the image-to-image relation, but this approach tends to yield lower accuracy. We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data and learn our large language model-based Visual Delta Generator (VDG) to generate text describing the visual difference (i.e., visual delta) between the two. VDG, equipped with fluent language knowledge and being model agnostic, can generate pseudo triplets to boost the performance of CIR models. Our approach significantly improves the existing supervised learning approaches and achieves state-of-the-art results on the CIR benchmarks.