Jain, Shashank
AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model
Moon, Seungwhan, Madotto, Andrea, Lin, Zhaojiang, Nagarajan, Tushar, Smith, Matt, Jain, Shashank, Yeh, Chun-Fu, Murugesan, Prakash, Heidari, Peyman, Liu, Yue, Srinet, Kavya, Damavandi, Babak, Kumar, Anuj
We present Any-Modality Augmented Language Model (AnyMAL), a unified model that reasons over diverse input modality signals (i.e. text, image, video, audio, IMU motion sensor), and generates textual responses. AnyMAL inherits the powerful text-based reasoning abilities of the state-of-the-art LLMs including LLaMA-2 (70B), and converts modality-specific signals to the joint textual space through a pre-trained aligner module. To further strengthen the multimodal LLM's capabilities, we fine-tune the model with a multimodal instruction set manually collected to cover diverse topics and tasks beyond simple QAs. We conduct comprehensive empirical analysis comprising both human and automatic evaluations, and demonstrate state-of-the-art performance on various multimodal tasks.
Improving Opinion-based Question Answering Systems Through Label Error Detection and Overwrite
Yang, Xiao, Mohamed, Ahmed K., Jain, Shashank, Peshterliev, Stanislav, Chatterjee, Debojeet, Zha, Hanwen, Bhalla, Nikita, Aneja, Gagan, Mohanty, Pranab
Label error is a ubiquitous problem in annotated data. Large amounts of label error substantially degrades the quality of deep learning models. Existing methods to tackle the label error problem largely focus on the classification task, and either rely on task specific architecture or require non-trivial additional computations, which is undesirable or even unattainable for industry usage. In this paper, we propose LEDO: a model-agnostic and computationally efficient framework for Label Error Detection and Overwrite. LEDO is based on Monte Carlo Dropout combined with uncertainty metrics, and can be easily generalized to multiple tasks and data sets. Applying LEDO to an industry opinion-based question answering system demonstrates it is effective at improving accuracy in all the core models. Specifically, LEDO brings 1.1% MRR gain for the retrieval model, 1.5% PR AUC improvement for the machine reading comprehension model, and 0.9% rise in the Average Precision for the ranker, on top of the strong baselines with a large-scale social media dataset. Importantly, LEDO is computationally efficient compared to methods that require loss function change, and cost-effective as the resulting data can be used in the same continuous training pipeline for production. Further analysis shows that these gains come from an improved decision boundary after cleaning the label errors existed in the training data.
A Study on the Efficiency and Generalization of Light Hybrid Retrievers
Luo, Man, Jain, Shashank, Gupta, Anchit, Einolghozati, Arash, Oguz, Barlas, Chatterjee, Debojeet, Chen, Xilun, Baral, Chitta, Heidari, Peyman
Hybrid retrievers can take advantage of both sparse and dense retrievers. Previous hybrid retrievers leverage indexing-heavy dense retrievers. In this work, we study "Is it possible to reduce the indexing memory of hybrid retrievers without sacrificing performance"? Driven by this question, we leverage an indexing-efficient dense retriever (i.e. DrBoost) and introduce a LITE retriever that further reduces the memory of DrBoost. LITE is jointly trained on contrastive learning and knowledge distillation from DrBoost. Then, we integrate BM25, a sparse retriever, with either LITE or DrBoost to form light hybrid retrievers. Our Hybrid-LITE retriever saves 13X memory while maintaining 98.0% performance of the hybrid retriever of BM25 and DPR. In addition, we study the generalization capacity of our light hybrid retrievers on out-of-domain dataset and a set of adversarial attacks datasets. Experiments showcase that light hybrid retrievers achieve better generalization performance than individual sparse and dense retrievers. Nevertheless, our analysis shows that there is a large room to improve the robustness of retrievers, suggesting a new research direction.
Text Generation with Speech Synthesis for ASR Data Augmentation
Huang, Zhuangqun, Keren, Gil, Jiang, Ziran, Jain, Shashank, Goss-Grubbs, David, Cheng, Nelson, Abtahi, Farnaz, Le, Duc, Zhang, David, D'Avirro, Antony, Campbell-Taylor, Ethan, Salas, Jessie, Veliche, Irina-Elena, Chen, Xi
Aiming at reducing the reliance on expensive human annotations, data synthesis for Automatic Speech Recognition (ASR) has remained an active area of research. While prior work mainly focuses on synthetic speech generation for ASR data augmentation, its combination with text generation methods is considerably less explored. In this work, we explore text augmentation for ASR using large-scale pre-trained neural networks, and systematically compare those to traditional text augmentation methods. The generated synthetic texts are then converted to synthetic speech using a text-to-speech (TTS) system and added to the ASR training data. In experiments conducted on three datasets, we find that neural models achieve 9%-15% relative WER improvement and outperform traditional methods. We conclude that text augmentation, particularly through modern neural approaches, is a viable tool for improving the accuracy of ASR systems.