Jafari, Mohammad
RODEO: Robust Outlier Detection via Exposing Adaptive Out-of-Distribution Samples
Mirzaei, Hossein, Jafari, Mohammad, Dehbashi, Hamid Reza, Ansari, Ali, Ghobadi, Sepehr, Hadi, Masoud, Moakhar, Arshia Soltani, Azizmalayeri, Mohammad, Baghshah, Mahdieh Soleymani, Rohban, Mohammad Hossein
In recent years, there have been significant improvements in various forms of image outlier detection. However, outlier detection performance under adversarial settings lags far behind that in standard settings. This is due to the lack of effective exposure to adversarial scenarios during training, especially on unseen outliers, leading to detection models failing to learn robust features. To bridge this gap, we introduce RODEO, a data-centric approach that generates effective outliers for robust outlier detection. More specifically, we show that incorporating outlier exposure (OE) and adversarial training can be an effective strategy for this purpose, as long as the exposed training outliers meet certain characteristics, including diversity, and both conceptual differentiability and analogy to the inlier samples. We leverage a text-to-image model to achieve this goal. We demonstrate both quantitatively and qualitatively that our adaptive OE method effectively generates ``diverse'' and ``near-distribution'' outliers, leveraging information from both text and image domains. Moreover, our experimental results show that utilizing our synthesized outliers significantly enhances the performance of the outlier detector, particularly in adversarial settings.
Killing it with Zero-Shot: Adversarially Robust Novelty Detection
Mirzaei, Hossein, Jafari, Mohammad, Dehbashi, Hamid Reza, Taghavi, Zeinab Sadat, Sabokrou, Mohammad, Rohban, Mohammad Hossein
Novelty Detection (ND) plays a crucial role in machine learning by identifying new or unseen data during model inference. This capability is especially important for the safe and reliable operation of automated systems. Despite advances in this field, existing techniques often fail to maintain their performance when subject to adversarial attacks. Our research addresses this gap by marrying the merits of nearest-neighbor algorithms with robust features obtained from models pretrained on ImageNet. We focus on enhancing the robustness and performance of ND algorithms. Experimental results demonstrate that our approach significantly outperforms current state-of-the-art methods across various benchmarks, particularly under adversarial conditions. By incorporating robust pretrained features into the k-NN algorithm, we establish a new standard for performance and robustness in the field of robust ND. This work opens up new avenues for research aimed at fortifying machine learning systems against adversarial vulnerabilities. Our implementation is publicly available at https://github.com/rohban-lab/ZARND.
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
Jafari, Mohammad, Zhang, Yimeng, Zhang, Yihua, Liu, Sijia
As machine learning tasks continue to evolve, the trend has been to gather larger datasets and train increasingly larger models. While this has led to advancements in accuracy, it has also escalated computational costs to unsustainable levels. Addressing this, our work aims to strike a delicate balance between computational efficiency and model accuracy, a persisting challenge in the field. We introduce a novel method that employs core subset selection for reweighting, effectively optimizing both computational time and model performance. By focusing on a strategically selected coreset, our approach offers a robust representation, as it efficiently minimizes the influence of outliers. The re-calibrated weights are then mapped back to and propagated across the entire dataset. Our experimental results substantiate the effectiveness of this approach, underscoring its potential as a scalable and precise solution for model training.
Adaptive Intelligent Secondary Control of Microgrids Using a Biologically-Inspired Reinforcement Learning
Jafari, Mohammad, Sarfi, Vahid, Ghasemkhani, Amir, Livani, Hanif, Yang, Lei, Xu, Hao
In this paper, a biologically-inspired adaptive intelligent secondary controller is developed for microgrids to tackle system dynamics uncertainties, faults, and/or disturbances. The developed adaptive biologically-inspired controller adopts a novel computational model of emotional learning in mammalian limbic system. The learning capability of the proposed biologically-inspired intelligent controller makes it a promising approach to deal with the power system non-linear and volatile dynamics without increasing the controller complexity, and maintain the voltage and frequency stabilities by using an efficient reference tracking mechanism. The performance of the proposed intelligent secondary controller is validated in terms of the voltage and frequency absolute errors in the simulated microgrid. Simulation results highlight the efficiency and robustness of the proposed intelligent controller under the fault conditions and different system uncertainties compared to other benchmark controllers.