Jadhav, Vishal
Redefining Super-Resolution: Fine-mesh PDE predictions without classical simulations
Sarkar, Rajat Kumar, Majumdar, Ritam, Jadhav, Vishal, Sakhinana, Sagar Srinivas, Runkana, Venkataramana
In Computational Fluid Dynamics (CFD), coarse mesh simulations offer computational efficiency but often lack precision. Applying conventional super-resolution to these simulations poses a significant challenge due to the fundamental contrast between downsampling high-resolution images and authentically emulating low-resolution physics. The former method conserves more of the underlying physics, surpassing the usual constraints of real-world scenarios. We propose a novel definition of super-resolution tailored for PDE-based problems. Instead of simply downsampling from a high-resolution dataset, we use coarse-grid simulated data as our input and predict fine-grid simulated outcomes. Employing a physics-infused UNet upscaling method, we demonstrate its efficacy across various 2D-CFD problems such as discontinuity detection in Burger's equation, Methane combustion, and fouling in Industrial heat exchangers. Our method enables the generation of fine-mesh solutions bypassing traditional simulation, ensuring considerable computational saving and fidelity to the original ground truth outcomes. Through diverse boundary conditions during training, we further establish the robustness of our method, paving the way for its broad applications in engineering and scientific CFD solvers.
HyperLoRA for PDEs
Majumdar, Ritam, Jadhav, Vishal, Deodhar, Anirudh, Karande, Shirish, Vig, Lovekesh, Runkana, Venkataramana
Physics-informed neural networks (PINNs) have been widely used to develop neural surrogates for solutions of Partial Differential Equations. A drawback of PINNs is that they have to be retrained with every change in initial-boundary conditions and PDE coefficients. The Hypernetwork, a model-based meta learning technique, takes in a parameterized task embedding as input and predicts the weights of PINN as output. Predicting weights of a neural network however, is a high-dimensional regression problem, and hypernetworks perform sub-optimally while predicting parameters for large base networks. To circumvent this issue, we use a low ranked adaptation (LoRA) formulation to decompose every layer of the base network into low-ranked tensors and use hypernetworks to predict the low-ranked tensors. Despite the reduced dimensionality of the resulting weight-regression problem, LoRA-based Hypernetworks violate the underlying physics of the given task. We demonstrate that the generalization capabilities of LoRA-based hypernetworks drastically improve when trained with an additional physics-informed loss component (HyperPINN) to satisfy the governing differential equations. We observe that LoRA-based HyperPINN training allows us to learn fast solutions for parameterized PDEs like Burger's equation and Navier Stokes: Kovasznay flow, while having an 8x reduction in prediction parameters on average without compromising on accuracy when compared to all other baselines.
Symbolic Regression for PDEs using Pruned Differentiable Programs
Majumdar, Ritam, Jadhav, Vishal, Deodhar, Anirudh, Karande, Shirish, Vig, Lovekesh, Runkana, Venkataramana
Physics-informed Neural Networks (PINNs) have been widely used to obtain accurate neural surrogates for a system of Partial Differential Equations (PDE). One of the major limitations of PINNs is that the neural solutions are challenging to interpret, and are often treated as black-box solvers. While Symbolic Regression (SR) has been studied extensively, very few works exist which generate analytical expressions to directly perform SR for a system of PDEs. In this work, we introduce an end-to-end framework for obtaining mathematical expressions for solutions of PDEs. We use a trained PINN to generate a dataset, upon which we perform SR. We use a Differentiable Program Architecture (DPA) defined using context-free grammar to describe the space of symbolic expressions. We improve the interpretability by pruning the DPA in a depth-first manner using the magnitude of weights as our heuristic. On average, we observe a 95.3% reduction in parameters of DPA while maintaining accuracy at par with PINNs. Furthermore, on an average, pruning improves the accuracy of DPA by 7.81% . We demonstrate our framework outperforms the existing state-of-the-art SR solvers on systems of complex PDEs like Navier-Stokes: Kovasznay flow and Taylor-Green Vortex flow. Furthermore, we produce analytical expressions for a complex industrial use-case of an Air-Preheater, without suffering from performance loss viz-a-viz PINNs.
Physics Informed Symbolic Networks
Majumdar, Ritam, Jadhav, Vishal, Deodhar, Anirudh, Karande, Shirish, Vig, Lovekesh, Runkana, Venkataramana
We introduce Physics Informed Symbolic Networks (PISN) which utilize physics-informed loss to obtain a symbolic solution for a system of Partial Differential Equations (PDE). Given a context-free grammar to describe the language of symbolic expressions, we propose to use weighted sum as continuous approximation for selection of a production rule. We use this approximation to define multilayer symbolic networks. We consider Kovasznay flow (Navier-Stokes) and two-dimensional viscous Burger's equations to illustrate that PISN are able to provide a performance comparable to PINNs across various start-of-the-art advances: multiple outputs and governing equations, domain-decomposition, hypernetworks. Furthermore, we propose Physics-informed Neurosymbolic Networks (PINSN) which employ a multilayer perceptron (MLP) operator to model the residue of symbolic networks. PINSNs are observed to give 2-3 orders of performance gain over standard PINN.
Real-time Health Monitoring of Heat Exchangers using Hypernetworks and PINNs
Majumdar, Ritam, Jadhav, Vishal, Deodhar, Anirudh, Karande, Shirish, Vig, Lovekesh, Runkana, Venkataramana
We demonstrate a Physics-informed Neural Network (PINN) based model for real-time health monitoring of a heat exchanger, that plays a critical role in improving energy efficiency of thermal power plants. A hypernetwork based approach is used to enable the domain-decomposed PINN learn the thermal behavior of the heat exchanger in response to dynamic boundary conditions, eliminating the need to re-train. As a result, we achieve orders of magnitude reduction in inference time in comparison to existing PINNs, while maintaining the accuracy on par with the physics-based simulations. This makes the approach very attractive for predictive maintenance of the heat exchanger in digital twin environments.