Jacobs, Abigail Z.
Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice
Cooper, A. Feder, Choquette-Choo, Christopher A., Bogen, Miranda, Jagielski, Matthew, Filippova, Katja, Liu, Ken Ziyu, Chouldechova, Alexandra, Hayes, Jamie, Huang, Yangsibo, Mireshghallah, Niloofar, Shumailov, Ilia, Triantafillou, Eleni, Kairouz, Peter, Mitchell, Nicole, Liang, Percy, Ho, Daniel E., Choi, Yejin, Koyejo, Sanmi, Delgado, Fernando, Grimmelmann, James, Shmatikov, Vitaly, De Sa, Christopher, Barocas, Solon, Cyphert, Amy, Lemley, Mark, boyd, danah, Vaughan, Jennifer Wortman, Brundage, Miles, Bau, David, Neel, Seth, Jacobs, Abigail Z., Terzis, Andreas, Wallach, Hanna, Papernot, Nicolas, Lee, Katherine
We articulate fundamental mismatches between technical methods for machine unlearning in Generative AI, and documented aspirations for broader impact that these methods could have for law and policy. These aspirations are both numerous and varied, motivated by issues that pertain to privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model's parameters, e.g., a particular individual's personal data or in-copyright expression of Spiderman that was included in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for thinking rigorously about these challenges, which enables us to be clear about why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact. We aim for conceptual clarity and to encourage more thoughtful communication among machine learning (ML), law, and policy experts who seek to develop and apply technical methods for compliance with policy objectives.
The Role of Relevance in Fair Ranking
Balagopalan, Aparna, Jacobs, Abigail Z., Biega, Asia
Online platforms mediate access to opportunity: relevance-based rankings create and constrain options by allocating exposure to job openings and job candidates in hiring platforms, or sellers in a marketplace. In order to do so responsibly, these socially consequential systems employ various fairness measures and interventions, many of which seek to allocate exposure based on worthiness. Because these constructs are typically not directly observable, platforms must instead resort to using proxy scores such as relevance and infer them from behavioral signals such as searcher clicks. Yet, it remains an open question whether relevance fulfills its role as such a worthiness score in high-stakes fair rankings. In this paper, we combine perspectives and tools from the social sciences, information retrieval, and fairness in machine learning to derive a set of desired criteria that relevance scores should satisfy in order to meaningfully guide fairness interventions. We then empirically show that not all of these criteria are met in a case study of relevance inferred from biased user click data. We assess the impact of these violations on the estimated system fairness and analyze whether existing fairness interventions may mitigate the identified issues. Our analyses and results surface the pressing need for new approaches to relevance collection and generation that are suitable for use in fair ranking.
Discovering heterogeneous subpopulations for fine-grained analysis of opioid use and opioid use disorders
Gong, Jen J., Jacobs, Abigail Z., Stuart, Toby E., de Vaan, Mathijs
The opioid epidemic in the United States claims over 40,000 lives per year, and it is estimated that well over two million Americans have an opioid use disorder. Over-prescription and misuse of prescription opioids play an important role in the epidemic. Individuals who are prescribed opioids, and who are diagnosed with opioid use disorder, have diverse underlying health states. Policy interventions targeting prescription opioid use, opioid use disorder, and overdose often fail to account for this variation. To identify latent health states, or phenotypes, pertinent to opioid use and opioid use disorders, we use probabilistic topic modeling with medical diagnosis histories from a statewide population of individuals who were prescribed opioids. We demonstrate that our learned phenotypes are predictive of future opioid use-related outcomes. In addition, we show how the learned phenotypes can provide important context for variability in opioid prescriptions. Understanding the heterogeneity in individual health states and in prescription opioid use can help identify policy interventions to address this public health crisis.
A unified view of generative models for networks: models, methods, opportunities, and challenges
Jacobs, Abigail Z., Clauset, Aaron
Research on probabilistic models of networks now spans a wide variety of fields, including physics, sociology, biology, statistics, and machine learning. These efforts have produced a diverse ecology of models and methods. Despite this diversity, many of these models share a common underlying structure: pairwise interactions (edges) are generated with probability conditional on latent vertex attributes. Differences between models generally stem from different philosophical choices about how to learn from data or different empirically-motivated goals. The highly interdisciplinary nature of work on these generative models, however, has inhibited the development of a unified view of their similarities and differences. For instance, novel theoretical models and optimization techniques developed in machine learning are largely unknown within the social and biological sciences, which have instead emphasized model interpretability. Here, we describe a unified view of generative models for networks that draws together many of these disparate threads and highlights the fundamental similarities and differences that span these fields. We then describe a number of opportunities and challenges for future work that are revealed by this view.
Learning Latent Block Structure in Weighted Networks
Aicher, Christopher, Jacobs, Abigail Z., Clauset, Aaron
Community detection is an important task in network analysis, in which we aim to learn a network partition that groups together vertices with similar community-level connectivity patterns. By finding such groups of vertices with similar structural roles, we extract a compact representation of the network's large-scale structure, which can facilitate its scientific interpretation and the prediction of unknown or future interactions. Popular approaches, including the stochastic block model, assume edges are unweighted, which limits their utility by throwing away potentially useful information. We introduce the `weighted stochastic block model' (WSBM), which generalizes the stochastic block model to networks with edge weights drawn from any exponential family distribution. This model learns from both the presence and weight of edges, allowing it to discover structure that would otherwise be hidden when weights are discarded or thresholded. We describe a Bayesian variational algorithm for efficiently approximating this model's posterior distribution over latent block structures. We then evaluate the WSBM's performance on both edge-existence and edge-weight prediction tasks for a set of real-world weighted networks. In all cases, the WSBM performs as well or better than the best alternatives on these tasks.
Adapting the Stochastic Block Model to Edge-Weighted Networks
Aicher, Christopher, Jacobs, Abigail Z., Clauset, Aaron
We generalize the stochastic block model to the important case in which edges are annotated with weights drawn from an exponential family distribution. This generalization introduces several technical difficulties for model estimation, which we solve using a Bayesian approach. We introduce a variational algorithm that efficiently approximates the model's posterior distribution for dense graphs. In specific numerical experiments on edge-weighted networks, this weighted stochastic block model outperforms the common approach of first applying a single threshold to all weights and then applying the classic stochastic block model, which can obscure latent block structure in networks. This model will enable the recovery of latent structure in a broader range of network data than was previously possible.
Adapting to Non-stationarity with Growing Expert Ensembles
Shalizi, Cosma Rohilla, Jacobs, Abigail Z., Klinkner, Kristina Lisa, Clauset, Aaron
When dealing with time series with complex non-stationarities, low retrospective regret on individual realizations is a more appropriate goal than low prospective risk in expectation. Online learning algorithms provide powerful guarantees of this form, and have often been proposed for use with non-stationary processes because of their ability to switch between different forecasters or ``experts''. However, existing methods assume that the set of experts whose forecasts are to be combined are all given at the start, which is not plausible when dealing with a genuinely historical or evolutionary system. We show how to modify the ``fixed shares'' algorithm for tracking the best expert to cope with a steadily growing set of experts, obtained by fitting new models to new data as it becomes available, and obtain regret bounds for the growing ensemble.