Goto

Collaborating Authors

 Ivankay, Adam


Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

arXiv.org Machine Learning

Real-world data often exhibits bias, imbalance, and privacy risks. Synthetic datasets have emerged to address these issues. This paradigm relies on generative AI models to generate unbiased, privacy-preserving data while maintaining fidelity to the original data. However, assessing the trustworthiness of synthetic datasets and models is a critical challenge. We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models. It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation. We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases like education, healthcare, banking, and human resources, spanning different data modalities such as tabular, time-series, vision, and natural language. This holistic assessment is essential for compliance with regulatory safeguards. We introduce a trustworthiness index to rank synthetic datasets based on their safeguards trade-offs. Furthermore, we present a trustworthiness-driven model selection and cross-validation process during training, exemplified with "TrustFormers" across various data types. This approach allows for controllable trustworthiness trade-offs in synthetic data creation. Our auditing framework fosters collaboration among stakeholders, including data scientists, governance experts, internal reviewers, external certifiers, and regulators. This transparent reporting should become a standard practice to prevent bias, discrimination, and privacy violations, ensuring compliance with policies and providing accountability, safety, and performance guarantees.


DARE: Towards Robust Text Explanations in Biomedical and Healthcare Applications

arXiv.org Artificial Intelligence

Along with the successful deployment of deep neural networks in several application domains, the need to unravel the black-box nature of these networks has seen a significant increase recently. Several methods have been introduced to provide insight into the inference process of deep neural networks. However, most of these explainability methods have been shown to be brittle in the face of adversarial perturbations of their inputs in the image and generic textual domain. In this work we show that this phenomenon extends to specific and important high stakes domains like biomedical datasets. In particular, we observe that the robustness of explanations should be characterized in terms of the accuracy of the explanation in linking a model's inputs and its decisions - faithfulness - and its relevance from the perspective of domain experts - plausibility. This is crucial to prevent explanations that are inaccurate but still look convincing in the context of the domain at hand. To this end, we show how to adapt current attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility. This results in our DomainAdaptiveAREstimator (DARE) attribution robustness estimator, allowing us to properly characterize the domain-specific robustness of faithful explanations. Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE, allowing us to train networks that display robust attributions. Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.


Estimating the Adversarial Robustness of Attributions in Text with Transformers

arXiv.org Artificial Intelligence

Explanations are crucial parts of deep neural network (DNN) classifiers. In high stakes applications, faithful and robust explanations are important to understand and gain trust in DNN classifiers. However, recent work has shown that state-of-the-art attribution methods in text classifiers are susceptible to imperceptible adversarial perturbations that alter explanations significantly while maintaining the correct prediction outcome. If undetected, this can critically mislead the users of DNNs. Thus, it is crucial to understand the influence of such adversarial perturbations on the networks' explanations and their perceptibility. In this work, we establish a novel definition of attribution robustness (AR) in text classification, based on Lipschitz continuity. Crucially, it reflects both attribution change induced by adversarial input alterations and perceptibility of such alterations. Moreover, we introduce a wide set of text similarity measures to effectively capture locality between two text samples and imperceptibility of adversarial perturbations in text. We then propose our novel TransformerExplanationAttack (TEA), a strong adversary that provides a tight estimation for attribution robustness in text classification. TEA uses state-of-the-art language models to extract word substitutions that result in fluent, contextual adversarial samples. Finally, with experiments on several text classification architectures, we show that TEA consistently outperforms current state-of-the-art AR estimators, yielding perturbations that alter explanations to a greater extent while being more fluent and less perceptible.


Artificial Intelligence Decision Support for Medical Triage

arXiv.org Artificial Intelligence

Applying state-of-the-art machine learning and natural language processing on approximately one million of teleconsultation records, we developed a triage system, now certified and in use at the largest European telemedicine provider. The system evaluates care alternatives through interactions with patients via a mobile application. Reasoning on an initial set of provided symptoms, the triage application generates AIpowered, personalized questions to better characterize the problem and recommends the most appropriate point of care and time frame for a consultation. The underlying technology was developed to meet the needs for performance, transparency, user acceptance and ease of use, central aspects to the adoption of AIbased decision support systems. Providing such remote guidance at the beginning of the chain of care has significant potential for improving cost efficiency, patient experience and outcomes. Being remote, always available and highly scalable, this service is fundamental in high demand situations, such as the current COVID-19 outbreak. Introduction Shortage of physicians and increasing healthcare costs have created a need for digital solutions to better optimize medical resources. In addition, patient expectations for mobile, fast and easy 24/7 access to doctors and health services drive the development of patient-centered solutions.


Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks

arXiv.org Machine Learning

We present an operational component of a real-world patient triage system. Given a specific patient presentation, the system is able to assess the level of medical urgency and issue the most appropriate recommendation in terms of best point of care and time to treat. We use an attention-based convolutional neural network architecture trained on 600,000 doctor notes in German. We compare two approaches, one that uses the full text of the medical notes and one that uses only a selected list of medical entities extracted from the text. These approaches achieve 79% and 66% precision, respectively, but on a confidence threshold of 0.6, precision increases to 85% and 75%, respectively. In addition, a method to detect warning symptoms is implemented to render the classification task transparent from a medical perspective. The method is based on the learning of attention scores and a method of automatic validation using the same data.