Goto

Collaborating Authors

 Islam, Saahil


SegResMamba: An Efficient Architecture for 3D Medical Image Segmentation

arXiv.org Artificial Intelligence

The Transformer architecture has opened a new paradigm in the domain of deep learning with its ability to model long-range dependencies and capture global context and has outpaced the traditional Convolution Neural Networks (CNNs) in many aspects. However, applying Transformer models to 3D medical image datasets presents significant challenges due to their high training time, and memory requirements, which not only hinder scalability but also contribute to elevated CO$_2$ footprint. This has led to an exploration of alternative models that can maintain or even improve performance while being more efficient and environmentally sustainable. Recent advancements in Structured State Space Models (SSMs) effectively address some of the inherent limitations of Transformers, particularly their high memory and computational demands. Inspired by these advancements, we propose an efficient 3D segmentation model for medical imaging called SegResMamba, designed to reduce computation complexity, memory usage, training time, and environmental impact while maintaining high performance. Our model uses less than half the memory during training compared to other state-of-the-art (SOTA) architectures, achieving comparable performance with significantly reduced resource demands.


A Novel Tracking Framework for Devices in X-ray Leveraging Supplementary Cue-Driven Self-Supervised Features

arXiv.org Artificial Intelligence

To restore proper blood flow in blocked coronary arteries via angioplasty procedure, accurate placement of devices such as catheters, balloons, and stents under live fluoroscopy or diagnostic angiography is crucial. Identified balloon markers help in enhancing stent visibility in X-ray sequences, while the catheter tip aids in precise navigation and co-registering vessel structures, reducing the need for contrast in angiography. However, accurate detection of these devices in interventional X-ray sequences faces significant challenges, particularly due to occlusions from contrasted vessels and other devices and distractions from surrounding, resulting in the failure to track such small objects. While most tracking methods rely on spatial correlation of past and current appearance, they often lack strong motion comprehension essential for navigating through these challenging conditions, and fail to effectively detect multiple instances in the scene. To overcome these limitations, we propose a self-supervised learning approach that enhances its spatio-temporal understanding by incorporating supplementary cues and learning across multiple representation spaces on a large dataset. Followed by that, we introduce a generic real-time tracking framework that effectively leverages the pretrained spatio-temporal network and also takes the historical appearance and trajectory data into account. This results in enhanced localization of multiple instances of device landmarks. Our method outperforms state-of-the-art methods in interventional X-ray device tracking, especially stability and robustness, achieving an 87% reduction in max error for balloon marker detection and a 61% reduction in max error for catheter tip detection.


Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers

arXiv.org Artificial Intelligence

An accurate detection and tracking of devices such as guiding catheters in live X-ray image acquisitions is an essential prerequisite for endovascular cardiac interventions. This information is leveraged for procedural guidance, e.g., directing stent placements. To ensure procedural safety and efficacy, there is a need for high robustness no failures during tracking. To achieve that, one needs to efficiently tackle challenges, such as: device obscuration by contrast agent or other external devices or wires, changes in field-of-view or acquisition angle, as well as the continuous movement due to cardiac and respiratory motion. To overcome the aforementioned challenges, we propose a novel approach to learn spatio-temporal features from a very large data cohort of over 16 million interventional X-ray frames using self-supervision for image sequence data. Our approach is based on a masked image modeling technique that leverages frame interpolation based reconstruction to learn fine inter-frame temporal correspondences. The features encoded in the resulting model are fine-tuned downstream. Our approach achieves state-of-the-art performance and in particular robustness compared to ultra optimized reference solutions (that use multi-stage feature fusion, multi-task and flow regularization). The experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions (23.20% when flow regularization is used); achieving a success score of 97.95% at a 3x faster inference speed of 42 frames-per-second (on GPU). The results encourage the use of our approach in various other tasks within interventional image analytics that require effective understanding of spatio-temporal semantics.