Goto

Collaborating Authors

 Islam, Mobarakol


PitVQA++: Vector Matrix-Low-Rank Adaptation for Open-Ended Visual Question Answering in Pituitary Surgery

arXiv.org Artificial Intelligence

-- Vision-Language Models (VLMs) in visual question answering (VQA) offer a unique opportunity to enhance intra-operative decision-making, promote intuitive interactions, and significantly advancing surgical education. However, the development of VLMs for surgical VQA is challenging due to limited datasets and the risk of overfitting and catastrophic forgetting during full fine-tuning of pretrained weights. While parameter-efficient techniques like Low-Rank Adaptation (LoRA) and Matrix of Rank Adaptation (MoRA) address adaptation challenges, their uniform parameter distribution overlooks the feature hierarchy in deep networks, where earlier layers, that learn general features, require more parameters than later ones. This work introduces PitVQA++ with an open-ended PitVQA dataset and vector matrix-low-rank adaptation (V ector-MoLoRA), an innovative VLM fine-tuning approach for adapting GPT -2 to pituitary surgery. Open-Ended PitVQA comprises around 101,803 frames from 25 procedural videos with 745,972 question-answer sentence pairs, covering key surgical elements such as phase and step recognition, context understanding, tool detection, localization, and interactions recognition. V ector-MoLoRA incorporates the principles of LoRA and MoRA to develop a matrix-low-rank adaptation strategy that employs vector ranking to allocate more parameters to earlier layers, gradually reducing them in the later layers. Furthermore, our risk-coverage analysis highlights its enhanced reliability and trustworthiness in handling uncertain predictions.


EndoUIC: Promptable Diffusion Transformer for Unified Illumination Correction in Capsule Endoscopy

arXiv.org Artificial Intelligence

Wireless Capsule Endoscopy (WCE) is highly valued for its non-invasive and painless approach, though its effectiveness is compromised by uneven illumination from hardware constraints and complex internal dynamics, leading to overexposed or underexposed images. While researchers have discussed the challenges of low-light enhancement in WCE, the issue of correcting for different exposure levels remains underexplored. To tackle this, we introduce EndoUIC, a WCE unified illumination correction solution using an end-to-end promptable diffusion transformer (DiT) model. In our work, the illumination prompt module shall navigate the model to adapt to different exposure levels and perform targeted image enhancement, in which the Adaptive Prompt Integration (API) and Global Prompt Scanner (GPS) modules shall further boost the concurrent representation learning between the prompt parameters and features. Besides, the U-shaped restoration DiT model shall capture the long-range dependencies and contextual information for unified illumination restoration. Moreover, we present a novel Capsule-endoscopy Exposure Correction (CEC) dataset, including ground-truth and corrupted image pairs annotated by expert photographers. Extensive experiments against a variety of state-of-the-art (SOTA) methods on four datasets showcase the effectiveness of our proposed method and components in WCE illumination restoration, and the additional downstream experiments further demonstrate its utility for clinical diagnosis and surgical assistance.


Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery

arXiv.org Artificial Intelligence

Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.


OSSAR: Towards Open-Set Surgical Activity Recognition in Robot-assisted Surgery

arXiv.org Artificial Intelligence

In the realm of automated robotic surgery and computer-assisted interventions, understanding robotic surgical activities stands paramount. Existing algorithms dedicated to surgical activity recognition predominantly cater to pre-defined closed-set paradigms, ignoring the challenges of real-world open-set scenarios. Such algorithms often falter in the presence of test samples originating from classes unseen during training phases. To tackle this problem, we introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework. Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space. Additionally, we address the issue of over-confidence in the closed set by refining model calibration, avoiding misclassification of unknown classes as known ones. To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset. Besides, we also collect a novel dataset on endoscopic submucosal dissection for surgical activity tasks. Extensive comparisons and ablation experiments on these datasets demonstrate the significant outperformance of our method over existing state-of-the-art approaches. Our proposed solution can effectively address the challenges of real-world surgical scenarios. Our code is publicly accessible at https://github.com/longbai1006/OSSAR.


Surgical-DINO: Adapter Learning of Foundation Models for Depth Estimation in Endoscopic Surgery

arXiv.org Artificial Intelligence

Purpose: Depth estimation in robotic surgery is vital in 3D reconstruction, surgical navigation and augmented reality visualization. Although the foundation model exhibits outstanding performance in many vision tasks, including depth estimation (e.g., DINOv2), recent works observed its limitations in medical and surgical domain-specific applications. This work presents a low-ranked adaptation (LoRA) of the foundation model for surgical depth estimation. Methods: We design a foundation model-based depth estimation method, referred to as Surgical-DINO, a low-rank adaptation of the DINOv2 for depth estimation in endoscopic surgery. We build LoRA layers and integrate them into DINO to adapt with surgery-specific domain knowledge instead of conventional fine-tuning. During training, we freeze the DINO image encoder, which shows excellent visual representation capacity, and only optimize the LoRA layers and depth decoder to integrate features from the surgical scene. Results: Our model is extensively validated on a MICCAI challenge dataset of SCARED, which is collected from da Vinci Xi endoscope surgery. We empirically show that Surgical-DINO significantly outperforms all the state-of-the-art models in endoscopic depth estimation tasks. The analysis with ablation studies has shown evidence of the remarkable effect of our LoRA layers and adaptation. Conclusion: Surgical-DINO shed some light on the successful adaptation of the foundation models into the surgical domain for depth estimation. There is clear evidence in the results that zero-shot prediction on pre-trained weights in computer vision datasets or naive fine-tuning is not sufficient to use the foundation model in the surgical domain directly. Code is available at https://github.com/BeileiCui/SurgicalDINO.


CAT-ViL: Co-Attention Gated Vision-Language Embedding for Visual Question Localized-Answering in Robotic Surgery

arXiv.org Artificial Intelligence

Medical students and junior surgeons often rely on senior surgeons and specialists to answer their questions when learning surgery. However, experts are often busy with clinical and academic work, and have little time to give guidance. Meanwhile, existing deep learning (DL)-based surgical Visual Question Answering (VQA) systems can only provide simple answers without the location of the answers. In addition, vision-language (ViL) embedding is still a less explored research in these kinds of tasks. Therefore, a surgical Visual Question Localized-Answering (VQLA) system would be helpful for medical students and junior surgeons to learn and understand from recorded surgical videos. We propose an end-to-end Transformer with the Co-Attention gaTed Vision-Language (CAT-ViL) embedding for VQLA in surgical scenarios, which does not require feature extraction through detection models. The CAT-ViL embedding module is designed to fuse multimodal features from visual and textual sources. The fused embedding will feed a standard Data-Efficient Image Transformer (DeiT) module, before the parallel classifier and detector for joint prediction. We conduct the experimental validation on public surgical videos from MICCAI EndoVis Challenge 2017 and 2018. The experimental results highlight the superior performance and robustness of our proposed model compared to the state-of-the-art approaches. Ablation studies further prove the outstanding performance of all the proposed components. The proposed method provides a promising solution for surgical scene understanding, and opens up a primary step in the Artificial Intelligence (AI)-based VQLA system for surgical training. Our code is publicly available.


Landmark Detection using Transformer Toward Robot-assisted Nasal Airway Intubation

arXiv.org Artificial Intelligence

Robot-assisted airway intubation application needs high accuracy in locating targets and organs. Two vital landmarks, nostrils and glottis, can be detected during the intubation to accommodate the stages of nasal intubation. Automated landmark detection can provide accurate localization and quantitative evaluation. The Detection Transformer (DeTR) leads object detectors to a new paradigm with long-range dependence. However, current DeTR requires long iterations to converge, and does not perform well in detecting small objects. This paper proposes a transformer-based landmark detection solution with deformable DeTR and the semantic-aligned-matching module for detecting landmarks in robot-assisted intubation. The semantics aligner can effectively align the semantics of object queries and image features in the same embedding space using the most discriminative features. To evaluate the performance of our solution, we utilize a publicly accessible glottis dataset and automatically annotate a nostril detection dataset. The experimental results demonstrate our competitive performance in detection accuracy. Our code is publicly accessible.


SurgicalGPT: End-to-End Language-Vision GPT for Visual Question Answering in Surgery

arXiv.org Artificial Intelligence

Advances in GPT-based large language models (LLMs) are revolutionizing natural language processing, exponentially increasing its use across various domains. Incorporating uni-directional attention, these autoregressive LLMs can generate long and coherent paragraphs. However, for visual question answering (VQA) tasks that require both vision and language processing, models with bi-directional attention or models employing fusion techniques are often employed to capture the context of multiple modalities all at once. As GPT does not natively process vision tokens, to exploit the advancements in GPT models for VQA in robotic surgery, we design an end-to-end trainable Language-Vision GPT (LV-GPT) model that expands the GPT2 model to include vision input (image). The proposed LV-GPT incorporates a feature extractor (vision tokenizer) and vision token embedding (token type and pose). Given the limitations of unidirectional attention in GPT models and their ability to generate coherent long paragraphs, we carefully sequence the word tokens before vision tokens, mimicking the human thought process of understanding the question to infer an answer from an image. Quantitatively, we prove that the LV-GPT model outperforms other state-of-the-art VQA models on two publically available surgical-VQA datasets (based on endoscopic vision challenge robotic scene segmentation 2018 and CholecTriplet2021) and on our newly annotated dataset (based on the holistic surgical scene dataset). We further annotate all three datasets to include question-type annotations to allow sub-type analysis. Furthermore, we extensively study and present the effects of token sequencing, token type and pose embedding for vision tokens in the LV-GPT model.


Revisiting Distillation for Continual Learning on Visual Question Localized-Answering in Robotic Surgery

arXiv.org Artificial Intelligence

The visual-question localized-answering (VQLA) system can serve as a knowledgeable assistant in surgical education. Except for providing text-based answers, the VQLA system can highlight the interested region for better surgical scene understanding. However, deep neural networks (DNNs) suffer from catastrophic forgetting when learning new knowledge. Specifically, when DNNs learn on incremental classes or tasks, their performance on old tasks drops dramatically. Furthermore, due to medical data privacy and licensing issues, it is often difficult to access old data when updating continual learning (CL) models. Therefore, we develop a non-exemplar continual surgical VQLA framework, to explore and balance the rigidity-plasticity trade-off of DNNs in a sequential learning paradigm. We revisit the distillation loss in CL tasks, and propose rigidity-plasticity-aware distillation (RP-Dist) and self-calibrated heterogeneous distillation (SH-Dist) to preserve the old knowledge. The weight aligning (WA) technique is also integrated to adjust the weight bias between old and new tasks. We further establish a CL framework on three public surgical datasets in the context of surgical settings that consist of overlapping classes between old and new surgical VQLA tasks. With extensive experiments, we demonstrate that our proposed method excellently reconciles learning and forgetting on the continual surgical VQLA over conventional CL methods. Our code is publicly accessible.


LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion

arXiv.org Artificial Intelligence

Wireless capsule endoscopy (WCE) is a painless and non-invasive diagnostic tool for gastrointestinal (GI) diseases. However, due to GI anatomical constraints and hardware manufacturing limitations, WCE vision signals may suffer from insufficient illumination, leading to a complicated screening and examination procedure. Deep learning-based low-light image enhancement (LLIE) in the medical field gradually attracts researchers. Given the exuberant development of the denoising diffusion probabilistic model (DDPM) in computer vision, we introduce a WCE LLIE framework based on the multi-scale convolutional neural network (CNN) and reverse diffusion process. The multi-scale design allows models to preserve high-resolution representation and context information from low-resolution, while the curved wavelet attention (CWA) block is proposed for high-frequency and local feature learning. Furthermore, we combine the reverse diffusion procedure to further optimize the shallow output and generate the most realistic image. The proposed method is compared with ten state-of-the-art (SOTA) LLIE methods and significantly outperforms quantitatively and qualitatively. The superior performance on GI disease segmentation further demonstrates the clinical potential of our proposed model. Our code is publicly accessible.