Irie, Go
BGM2Pose: Active 3D Human Pose Estimation with Non-Stationary Sounds
Shibata, Yuto, Oumi, Yusuke, Irie, Go, Kimura, Akisato, Aoki, Yoshimitsu, Isogawa, Mariko
We propose BGM2Pose, a non-invasive 3D human pose estimation method using arbitrary music (e.g., background music) as active sensing signals. Unlike existing approaches that significantly limit practicality by employing intrusive chirp signals within the audible range, our method utilizes natural music that causes minimal discomfort to humans. Estimating human poses from standard music presents significant challenges. In contrast to sound sources specifically designed for measurement, regular music varies in both volume and pitch. These dynamic changes in signals caused by music are inevitably mixed with alterations in the sound field resulting from human motion, making it hard to extract reliable cues for pose estimation. To address these challenges, BGM2Pose introduces a Contrastive Pose Extraction Module that employs contrastive learning and hard negative sampling to eliminate musical components from the recorded data, isolating the pose information. Additionally, we propose a Frequency-wise Attention Module that enables the model to focus on subtle acoustic variations attributable to human movement by dynamically computing attention across frequency bands. Experiments suggest that our method outperforms the existing methods, demonstrating substantial potential for real-world applications. Our datasets and code will be made publicly available.
Acoustic-based 3D Human Pose Estimation Robust to Human Position
Oumi, Yusuke, Shibata, Yuto, Irie, Go, Kimura, Akisato, Aoki, Yoshimitsu, Isogawa, Mariko
This paper explores the problem of 3D human pose estimation from only low-level acoustic signals. The existing active acoustic sensing-based approach for 3D human pose estimation implicitly assumes that the target user is positioned along a line between loudspeakers and a microphone. Because reflection and diffraction of sound by the human body cause subtle acoustic signal changes compared to sound obstruction, the existing model degrades its accuracy significantly when subjects deviate from this line, limiting its practicality in real-world scenarios. To overcome this limitation, we propose a novel method composed of a position discriminator and reverberation-resistant model. The former predicts the standing positions of subjects and applies adversarial learning to extract subject position-invariant features. The latter utilizes acoustic signals before the estimation target time as references to enhance robustness against the variations in sound arrival times due to diffraction and reflection. We construct an acoustic pose estimation dataset that covers diverse human locations and demonstrate through experiments that our proposed method outperforms existing approaches.
Black-Box Forgetting
Kuwana, Yusuke, Goto, Yuta, Shibata, Takashi, Irie, Go
Large-scale pre-trained models (PTMs) provide remarkable zero-shot classification capability covering a wide variety of object classes. However, practical applications do not always require the classification of all kinds of objects, and leaving the model capable of recognizing unnecessary classes not only degrades overall accuracy but also leads to operational disadvantages. To mitigate this issue, we explore the selective forgetting problem for PTMs, where the task is to make the model unable to recognize only the specified classes while maintaining accuracy for the rest. All the existing methods assume "white-box" settings, where model information such as architectures, parameters, and gradients is available for training. However, PTMs are often "black-box," where information on such models is unavailable for commercial reasons or social responsibilities. In this paper, we address a novel problem of selective forgetting for black-box models, named Black-Box Forgetting, and propose an approach to the problem. Given that information on the model is unavailable, we optimize the input prompt to decrease the accuracy of specified classes through derivative-free optimization. To avoid difficult high-dimensional optimization while ensuring high forgetting performance, we propose Latent Context Sharing, which introduces common low-dimensional latent components among multiple tokens for the prompt. Experiments on four standard benchmark datasets demonstrate the superiority of our method with reasonable baselines.
Unsolvable Problem Detection: Evaluating Trustworthiness of Vision Language Models
Miyai, Atsuyuki, Yang, Jingkang, Zhang, Jingyang, Ming, Yifei, Yu, Qing, Irie, Go, Li, Yixuan, Li, Hai, Liu, Ziwei, Aizawa, Kiyoharu
This paper introduces a novel and significant challenge for Vision Language Models (VLMs), termed Unsolvable Problem Detection (UPD). UPD examines the VLM's ability to withhold answers when faced with unsolvable problems in the context of Visual Question Answering (VQA) tasks. UPD encompasses three distinct settings: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). To deeply investigate the UPD problem, extensive experiments indicate that most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with our benchmarks to varying extents, highlighting significant room for the improvements. To address UPD, we explore both training-free and training-based solutions, offering new insights into their effectiveness and limitations. We hope our insights, together with future efforts within the proposed UPD settings, will enhance the broader understanding and development of more practical and reliable VLMs.