Intrator, Nathan
Neuronal Fiber Delineation in Area of Edema from Diffusion Weighted MRI
Pasternak, Ofer, Intrator, Nathan, Sochen, Nir, Assaf, Yaniv
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a non invasive method for brain neuronal fibers delineation. Here we show a modification for DT-MRI that allows delineation of neuronal fibers which are infiltrated by edema. We use the Muliple Tensor Variational (MTV) framework which replaces the diffusion model of DT-MRI with a multiple component model and fits it to the signal attenuation with a variational regularization mechanism. In order to reduce free water contamination we estimate the free water compartment volume fraction in each voxel, remove it, and then calculate the anisotropy of the remaining compartment. The variational framework was applied on data collected with conventional clinical parameters, containing only six diffusion directions. By using the variational framework we were able to overcome the highly ill posed fitting. The results show that we were able to find fibers that were not found by DT-MRI.
Neuronal Fiber Delineation in Area of Edema from Diffusion Weighted MRI
Pasternak, Ofer, Intrator, Nathan, Sochen, Nir, Assaf, Yaniv
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a non invasive methodfor brain neuronal fibers delineation. Here we show a modification forDT-MRI that allows delineation of neuronal fibers which are infiltrated by edema. We use the Muliple Tensor Variational (MTV) framework which replaces the diffusion model of DT-MRI with a multiple componentmodel and fits it to the signal attenuation with a variational regularizationmechanism. In order to reduce free water contamination weestimate the free water compartment volume fraction in each voxel, remove it, and then calculate the anisotropy of the remaining compartment.
Probabilistic principles in unsupervised learning of visual structure: human data and a model
Edelman, Shimon, Hiles, Benjamin P., Yang, Hwajin, Intrator, Nathan
To find out how the representations of structured visual objects depend on the co-occurrence statistics of their constituents, we exposed subjects to a set of composite images with tight control exerted over (1) the conditional probabilities of the constituent fragments, and (2) the value of Barlow's criterion of "suspicious coincidence" (the ratio of joint probability to the product of marginals). We then compared the part verification response times for various probe/target combinations before and after the exposure. For composite probes, the speedup was much larger for targets that contained pairs of fragments perfectly predictive of each other, compared to those that did not. This effect was modulated by the significance of their co-occurrence as estimated by Barlow's criterion. For lone-fragment probes, the speedup in all conditions was generally lower than for composites. These results shed light on the brain's strategies for unsupervised acquisition of structural information in vision.
Probabilistic principles in unsupervised learning of visual structure: human data and a model
Edelman, Shimon, Hiles, Benjamin P., Yang, Hwajin, Intrator, Nathan
To find out how the representations of structured visual objects depend on the co-occurrence statistics of their constituents, we exposed subjects to a set of composite images with tight control exerted over (1) the conditional probabilities of the constituent fragments, and (2) the value of Barlow's criterion of "suspicious coincidence" (the ratio of joint probability to the product of marginals). We then compared the part verification response times for various probe/target combinations before and after the exposure. For composite probes, the speedup was much larger for targets that contained pairs of fragments perfectly predictive of each other, compared to those that did not. This effect was modulated by the significance of their co-occurrence as estimated by Barlow's criterion. For lone-fragment probes, the speedup in all conditions was generally lower than for composites. These results shed light on the brain's strategies for unsupervised acquisition of structural information in vision.
Probabilistic principles in unsupervised learning of visual structure: human data and a model
Edelman, Shimon, Hiles, Benjamin P., Yang, Hwajin, Intrator, Nathan
To find out how the representations of structured visual objects depend on the co-occurrence statistics of their constituents, we exposed subjects to a set of composite images with tight control exerted over (1) the conditional probabilitiesof the constituent fragments, and (2) the value of Barlow's criterion of "suspicious coincidence" (the ratio of joint probability to the product of marginals). We then compared the part verification response timesfor various probe/target combinations before and after the exposure. For composite probes, the speedup was much larger for targets thatcontained pairs of fragments perfectly predictive of each other, compared to those that did not. This effect was modulated by the significance oftheir co-occurrence as estimated by Barlow's criterion. For lone-fragment probes, the speedup in all conditions was generally lower than for composites. These results shed light on the brain's strategies for unsupervised acquisition of structural information in vision.
A Productive, Systematic Framework for the Representation of Visual Structure
Edelman, Shimon, Intrator, Nathan
For example, priming in a subliminal perception task was found to be confined to a quadrant of the visual field [16]. The notion that the representation of an object may be tied to a particular location in the visual field where it is first observed is compatible with the concept of object file, a hypothetical record created by the visual system for every encountered object, which persists as long as the object is observed. Moreover, location (as it figures in the CoF model) should be interpreted relative to the focus of attention, rather than retinotopically [17]. The idea that global relationships (hence, large-scale structure) have precedence over local ones [18], which is central to our approach, has withstood extensive testing in the past two decades. Even with the perceptual salience of the global and local structure equated, subjects are able to process the relations among elements before the elements themselves are identified [19]. More generally, humans are limited in their ability to represent spatial structure, in that the representation of spatial relations requires spatial attention.
A Productive, Systematic Framework for the Representation of Visual Structure
Edelman, Shimon, Intrator, Nathan
For example, priming in a subliminal perception task was found to be confined to a quadrant of the visual field [16]. The notion that the representation of an object may be tied to a particular location in the visual field where it is first observed is compatible with the concept of object file, a hypothetical record created by the visual system for every encountered object, which persists as long as the object is observed. Moreover, location (as it figures in the CoF model) should be interpreted relative to the focus of attention, rather than retinotopically [17]. The idea that global relationships (hence, large-scale structure) have precedence over local ones [18], which is central to our approach, has withstood extensive testing in the past two decades. Even with the perceptual salience of the global and local structure equated, subjects are able to process the relations among elements before the elements themselves are identified [19]. More generally, humans are limited in their ability to represent spatial structure, in that the representation of spatial relations requires spatial attention.
A Productive, Systematic Framework for the Representation of Visual Structure
Edelman, Shimon, Intrator, Nathan
For example, priming in a subliminal perception task was found to be confined to a quadrant of the visual field [16]. The notion that the representation of an object may be tied to a particular location in the visual field where it is first observed is compatible with the concept of object file, a hypothetical record created by the visual system for every encountered object, which persists as long as the object is observed. Moreover, location (as it figures in the CoF model) should be interpreted relative to the focus of attention, rather than retinotopically [17]. The idea that global relationships (hence, large-scale structure) have precedence over local ones [18], which is central to our approach, has withstood extensive testing in the past two decades. Even with the perceptual salience of the global and local structure equated, subjects are able to process the relations among elements before the elements themselves are identified [19]. More generally, humans are limited in their ability to represent spatial structure, in that the representation of spatial relations requires spatial attention. For example, visual search is difficult when above below 0. 9
Receptive Field Formation in Natural Scene Environments: Comparison of Single Cell Learning Rules
Blais, Brian S., Intrator, Nathan, Shouval, Harel Z., Cooper, Leon N.
We study several statistically and biologically motivated learning rules using the same visual environment, one made up of natural scenes, and the same single cell neuronal architecture. This allows us to concentrate on the feature extraction and neuronal coding properties of these rules. Included in these rules are kurtosis and skewness maximization, the quadratic form of the BCM learning rule, and single cell ICA. Using a structure removal method, we demonstrate that receptive fields developed using these rules depend on a small portion of the distribution. We find that the quadratic form of the BCM rule behaves in a manner similar to a kurtosis maximization rule when the distribution contains kurtotic directions, although the BCM modification equations are computationally simpler.