Goto

Collaborating Authors

 Hudelot, Céline


EuroBERT: Scaling Multilingual Encoders for European Languages

arXiv.org Artificial Intelligence

Many important tasks in Natural Language Processing (NLP), including information retrieval, classification, or regression, are built upon general-purpose vector representations. These representations are traditionally obtained from bidirectional encoder models, which aggregate information from the left and right contexts of each token (Devlin et al., 2019; Conneau et al., 2020; He et al., 2023). In contrast, recent advances in generative modeling have shifted the research community's attention towards unidirectional architectures (Bai et al., 2023; Llama Team, 2024; OLMo et al., 2025). Notably, these efforts have identified several key performance drivers that span architectural advances, data improvements, and increased scale. Yet, despite no apparent barrier to transferring these insights to bidirectional architectures, little effort has been devoted towards this objective, forcing practitioners to depend on outdated models. In this paper, we introduce a refreshed recipe for training general-purpose multilingual encoders, resulting in the EuroBERT family. Drawing inspiration from recent progress in decoder models, our models feature an updated architecture ( 2.1), and are trained on a 5T-token multilingual dataset, covering widely spoken European and global languages,


Registration of Longitudinal Liver Examinations for Tumor Progress Assessment

arXiv.org Artificial Intelligence

Assessing cancer progression in liver CT scans is a clinical challenge, requiring a comparison of scans at different times for the same patient. Practitioners must identify existing tumors, compare them with prior exams, identify new tumors, and evaluate overall disease evolution. This process is particularly complex in liver examinations due to misalignment between exams caused by several factors. Indeed, longitudinal liver examinations can undergo different non-pathological and pathological changes due to non-rigid deformations, the appearance or disappearance of pathologies, and other variations. In such cases, existing registration approaches, mainly based on intrinsic features may distort tumor regions, biasing the tumor progress evaluation step and the corresponding diagnosis. This work proposes a registration method based only on geometrical and anatomical information from liver segmentation, aimed at aligning longitudinal liver images for aided diagnosis. The proposed method is trained and tested on longitudinal liver CT scans, with 317 patients for training and 53 for testing. Our experimental results support our claims by showing that our method is better than other registration techniques by providing a smoother deformation while preserving the tumor burden (total volume of tissues considered as tumor) within the volume. Qualitative results emphasize the importance of smooth deformations in preserving tumor appearance.


Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis

arXiv.org Artificial Intelligence

Neural metrics for machine translation (MT) evaluation have become increasingly prominent due to their superior correlation with human judgments compared to traditional lexical metrics. Researchers have therefore utilized neural metrics through quality-informed decoding strategies, achieving better results than likelihood-based methods. With the rise of Large Language Models (LLMs), preference-based alignment techniques have gained attention for their potential to enhance translation quality by optimizing model weights directly on preferences induced by quality estimators. This study focuses on Contrastive Preference Optimization (CPO) and conducts extensive experiments to evaluate the impact of preference-based alignment on translation quality. Our findings indicate that while CPO consistently outperforms Supervised Fine-Tuning (SFT) on high-quality data with regard to the alignment metric, it may lead to instability across downstream evaluation metrics, particularly between neural and lexical ones. Additionally, we demonstrate that relying solely on the base model for generating candidate translations achieves performance comparable to using multiple external systems, while ensuring better consistency across downstream metrics.


Neurosymbolic Conformal Classification

arXiv.org Artificial Intelligence

The last decades have seen a drastic improvement of Machine Learning (ML), mainly driven by Deep Learning (DL). However, despite the resounding successes of ML in many domains, the impossibility to provide guarantees of conformity and the fragility of ML systems (faced with distribution shifts, adversarial attacks, etc.) have prevented the design of trustworthy AI systems. Several research paths have been investigated to mitigate this fragility and provide some guarantees regarding the behavior of ML systems, among which are neurosymbolic AI and conformal prediction. Neurosymbolic artificial intelligence is a growing field of research aiming to combine neural network learning capabilities with the reasoning abilities of symbolic systems. One of the objective of this hybridization can be to provide theoritical guarantees that the output of the system will comply with some prior knowledge. Conformal prediction is a set of techniques that enable to take into account the uncertainty of ML systems by transforming the unique prediction into a set of predictions, called a confidence set. Interestingly, this comes with statistical guarantees regarding the presence of the true label inside the confidence set. Both approaches are distribution-free and model-agnostic. In this paper, we see how these two approaches can complement one another. We introduce several neurosymbolic conformal prediction techniques and explore their different characteristics (size of confidence sets, computational complexity, etc.).


ColPali: Efficient Document Retrieval with Vision Language Models

arXiv.org Artificial Intelligence

Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings Figure 1: For each term in a user query, ColPali identifies of modern systems motivate the introduction the most relevant document image patches (highlighted of a new retrieval model architecture, zones) and computes a query-to-page matching ColPali, which leverages the document score. We can then swiftly retrieve the most relevant understanding capabilities of recent Vision Language documents from a large pre-indexed corpus. Models to produce high-quality contextualized embeddings solely from images of document pages.


Bond Graphs for multi-physics informed Neural Networks for multi-variate time series

arXiv.org Artificial Intelligence

In the trend of hybrid Artificial Intelligence (AI) techniques, Physic Informed Machine Learning has seen a growing interest. It operates mainly by imposing a data, learning or inductive bias with simulation data, Partial Differential Equations or equivariance and invariance properties. While these models have shown great success on tasks involving one physical domain such as fluid dynamics, existing methods still struggle on tasks with complex multi-physical and multi-domain phenomena. To address this challenge, we propose to leverage Bond Graphs, a multi-physics modeling approach together with Graph Neural Network. We thus propose Neural Bond Graph Encoder (NBgE), a model agnostic physical-informed encoder tailored for multi-physics systems. It provides an unified framework for any multi-physics informed AI with a graph encoder readable for any deep learning model. Our experiments on two challenging multi-domain physical systems - a Direct Current Motor and the Respiratory system - demonstrate the effectiveness of our approach on a multi-variate time series forecasting task.


Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning

arXiv.org Artificial Intelligence

AI Foundation models are gaining traction in various applications, including medical fields like radiology. However, medical foundation models are often tested on limited tasks, leaving their generalisability and biases unexplored. We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays. We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation, and provide an in depth analysis of population, age and sex biases of our model. Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical workflows and interpreting X-rays holistically. With RayDINO and small task-specific adapters, we reach state-of-the-art results and improve generalization to unseen populations while mitigating bias, illustrating the true promise of foundation models: versatility and robustness.


Complexity of Probabilistic Reasoning for Neurosymbolic Classification Techniques

arXiv.org Artificial Intelligence

Neurosymbolic artificial intelligence is a growing field of research aiming to combine neural network learning capabilities with the reasoning abilities of symbolic systems. Informed multi-label classification is a sub-field of neurosymbolic AI which studies how to leverage prior knowledge to improve neural classification systems. A well known family of neurosymbolic techniques for informed classification use probabilistic reasoning to integrate this knowledge during learning, inference or both. Therefore, the asymptotic complexity of probabilistic reasoning is of cardinal importance to assess the scalability of such techniques. However, this topic is rarely tackled in the neurosymbolic literature, which can lead to a poor understanding of the limits of probabilistic neurosymbolic techniques. In this paper, we introduce a formalism for informed supervised classification tasks and techniques. We then build upon this formalism to define three abstract neurosymbolic techniques based on probabilistic reasoning. Finally, we show computational complexity results on several representation languages for prior knowledge commonly found in the neurosymbolic literature.


Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism

arXiv.org Artificial Intelligence

Neural Information Retrieval (NIR) has significantly improved upon heuristic-based IR systems. Yet, failures remain frequent, the models used often being unable to retrieve documents relevant to the user's query. We address this challenge by proposing a lightweight abstention mechanism tailored for real-world constraints, with particular emphasis placed on the reranking phase. We introduce a protocol for evaluating abstention strategies in a black-box scenario, demonstrating their efficacy, and propose a simple yet effective data-driven mechanism. We provide open-source code for experiment replication and abstention implementation, fostering wider adoption and application in diverse contexts.


Recommendation of data-free class-incremental learning algorithms by simulating future data

arXiv.org Artificial Intelligence

Class-incremental learning deals with sequential data streams composed of batches of classes. Various algorithms have been proposed to address the challenging case where samples from past classes cannot be stored. However, selecting an appropriate algorithm for a user-defined setting is an open problem, as the relative performance of these algorithms depends on the incremental settings. To solve this problem, we introduce an algorithm recommendation method that simulates the future data stream. Given an initial set of classes, it leverages generative models to simulate future classes from the same visual domain. We evaluate recent algorithms on the simulated stream and recommend the one which performs best in the user-defined incremental setting. We illustrate the effectiveness of our method on three large datasets using six algorithms and six incremental settings. Our method outperforms competitive baselines, and performance is close to that of an oracle choosing the best algorithm in each setting. This work contributes to facilitate the practical deployment of incremental learning.