Goto

Collaborating Authors

 Huang, Zhihan


Low-dimensional adaptation of diffusion models: Convergence in total variation

arXiv.org Machine Learning

This paper investigates how diffusion generative models leverage (unknown) low-dimensional structure to accelerate sampling. Focusing on two mainstream samplers -- the denoising diffusion implicit model (DDIM) and the denoising diffusion probabilistic model (DDPM) -- and assuming accurate score estimates, we prove that their iteration complexities are no greater than the order of $k/\varepsilon$ (up to some log factor), where $\varepsilon$ is the precision in total variation distance and $k$ is some intrinsic dimension of the target distribution. Our results are applicable to a broad family of target distributions without requiring smoothness or log-concavity assumptions. Further, we develop a lower bound that suggests the (near) necessity of the coefficients introduced by Ho et al.(2020) and Song et al.(2020) in facilitating low-dimensional adaptation. Our findings provide the first rigorous evidence for the adaptivity of the DDIM-type samplers to unknown low-dimensional structure, and improve over the state-of-the-art DDPM theory regarding total variation convergence.


Denoising diffusion probabilistic models are optimally adaptive to unknown low dimensionality

arXiv.org Machine Learning

The denoising diffusion probabilistic model (DDPM) has emerged as a mainstream generative model in generative AI. While sharp convergence guarantees have been established for the DDPM, the iteration complexity is, in general, proportional to the ambient data dimension, resulting in overly conservative theory that fails to explain its practical efficiency. This has motivated the recent work Li and Yan (2024a) to investigate how the DDPM can achieve sampling speed-ups through automatic exploitation of intrinsic low dimensionality of data. We strengthen this line of work by demonstrating, in some sense, optimal adaptivity to unknown low dimensionality. For a broad class of data distributions with intrinsic dimension $k$, we prove that the iteration complexity of the DDPM scales nearly linearly with $k$, which is optimal when using KL divergence to measure distributional discrepancy. Notably, our work is closely aligned with the independent concurrent work Potaptchik et al. (2024) -- posted two weeks prior to ours -- in establishing nearly linear-$k$ convergence guarantees for the DDPM.


Towards a mathematical theory for consistency training in diffusion models

arXiv.org Artificial Intelligence

Consistency models, which were proposed to mitigate the high computational overhead during the sampling phase of diffusion models, facilitate single-step sampling while attaining state-of-the-art empirical performance. When integrated into the training phase, consistency models attempt to train a sequence of consistency functions capable of mapping any point at any time step of the diffusion process to its starting point. Despite the empirical success, a comprehensive theoretical understanding of consistency training remains elusive. This paper takes a first step towards establishing theoretical underpinnings for consistency models. We demonstrate that, in order to generate samples within $\varepsilon$ proximity to the target in distribution (measured by some Wasserstein metric), it suffices for the number of steps in consistency learning to exceed the order of $d^{5/2}/\varepsilon$, with $d$ the data dimension. Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.