Goto

Collaborating Authors

 Huang, Zhengjie


Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials

arXiv.org Artificial Intelligence

Heterogeneous Graph Neural Networks (HGNNs) have gained significant popularity in various heterogeneous graph learning tasks. However, most HGNNs rely on spatial domain-based message passing and attention modules for information propagation and aggregation. These spatial-based HGNNs neglect the utilization of spectral graph convolutions, which are the foundation of Graph Convolutional Networks (GCN) on homogeneous graphs. Inspired by the effectiveness and scalability of spectral-based GNNs on homogeneous graphs, this paper explores the extension of spectral-based GNNs to heterogeneous graphs. We propose PSHGCN, a novel heterogeneous convolutional network based on positive noncommutative polynomials. PSHGCN provides a simple yet effective approach for learning spectral graph convolutions on heterogeneous graphs. Moreover, we demonstrate the rationale of PSHGCN in graph optimization. We conducted an extensive experimental study to show that PSHGCN can learn diverse spectral heterogeneous graph convolutions and achieve superior performance in node classification tasks. Our code is available at https://github.com/ivam-he/PSHGCN.


Label Information Enhanced Fraud Detection against Low Homophily in Graphs

arXiv.org Artificial Intelligence

Node classification is a substantial problem in graph-based fraud detection. Many existing works adopt Graph Neural Networks (GNNs) to enhance fraud detectors. While promising, currently most GNN-based fraud detectors fail to generalize to the low homophily setting. Besides, label utilization has been proved to be significant factor for node classification problem. But we find they are less effective in fraud detection tasks due to the low homophily in graphs. In this work, we propose GAGA, a novel Group AGgregation enhanced TrAnsformer, to tackle the above challenges. Specifically, the group aggregation provides a portable method to cope with the low homophily issue. Such an aggregation explicitly integrates the label information to generate distinguishable neighborhood information. Along with group aggregation, an attempt towards end-to-end trainable group encoding is proposed which augments the original feature space with the class labels. Meanwhile, we devise two additional learnable encodings to recognize the structural and relational context. Then, we combine the group aggregation and the learnable encodings into a Transformer encoder to capture the semantic information. Experimental results clearly show that GAGA outperforms other competitive graph-based fraud detectors by up to 24.39% on two trending public datasets and a real-world industrial dataset from Anonymous. Even more, the group aggregation is demonstrated to outperform other label utilization methods (e.g., C&S, BoT/UniMP) in the low homophily setting.


Layout-aware Webpage Quality Assessment

arXiv.org Artificial Intelligence

Identifying high-quality webpages is fundamental for real-world search engines, which can fulfil users' information need with the less cognitive burden. Early studies of \emph{webpage quality assessment} usually design hand-crafted features that may only work on particular categories of webpages (e.g., shopping websites, medical websites). They can hardly be applied to real-world search engines that serve trillions of webpages with various types and purposes. In this paper, we propose a novel layout-aware webpage quality assessment model currently deployed in our search engine. Intuitively, layout is a universal and critical dimension for the quality assessment of different categories of webpages. Based on this, we directly employ the meta-data that describes a webpage, i.e., Document Object Model (DOM) tree, as the input of our model. The DOM tree data unifies the representation of webpages with different categories and purposes and indicates the layout of webpages. To assess webpage quality from complex DOM tree data, we propose a graph neural network (GNN) based method that extracts rich layout-aware information that implies webpage quality in an end-to-end manner. Moreover, we improve the GNN method with an attentive readout function, external web categories and a category-aware sampling method. We conduct rigorous offline and online experiments to show that our proposed solution is effective in real search engines, improving the overall usability and user experience.


Who is Gambling? Finding Cryptocurrency Gamblers Using Multi-modal Retrieval Methods

arXiv.org Artificial Intelligence

With the popularity of cryptocurrencies and the remarkable development of blockchain technology, decentralized applications emerged as a revolutionary force for the Internet. Meanwhile, decentralized applications have also attracted intense attention from the online gambling community, with more and more decentralized gambling platforms created through the help of smart contracts. Compared with conventional gambling platforms, decentralized gambling have transparent rules and a low participation threshold, attracting a substantial number of gamblers. In order to discover gambling behaviors and identify the contracts and addresses involved in gambling, we propose a tool termed ETHGamDet. The tool is able to automatically detect the smart contracts and addresses involved in gambling by scrutinizing the smart contract code and address transaction records. Interestingly, we present a novel LightGBM model with memory components, which possesses the ability to learn from its own misclassifications. As a side contribution, we construct and release a large-scale gambling dataset at https://github.com/AwesomeHuang/Bitcoin-Gambling-Dataset to facilitate future research in this field. Empirically, ETHGamDet achieves a F1-score of 0.72 and 0.89 in address classification and contract classification respectively, and offers novel and interesting insights.


Demystifying Bitcoin Address Behavior via Graph Neural Networks

arXiv.org Artificial Intelligence

Bitcoin is one of the decentralized cryptocurrencies powered by a peer-to-peer blockchain network. Parties who trade in the bitcoin network are not required to disclose any personal information. Such property of anonymity, however, precipitates potential malicious transactions to a certain extent. Indeed, various illegal activities such as money laundering, dark network trading, and gambling in the bitcoin network are nothing new now. While a proliferation of work has been developed to identify malicious bitcoin transactions, the behavior analysis and classification of bitcoin addresses are largely overlooked by existing tools. In this paper, we propose BAClassifier, a tool that can automatically classify bitcoin addresses based on their behaviors. Technically, we come up with the following three key designs. First, we consider casting the transactions of the bitcoin address into an address graph structure, of which we introduce a graph node compression technique and a graph structure augmentation method to characterize a unified graph representation. Furthermore, we leverage a graph feature network to learn the graph representations of each address and generate the graph embeddings. Finally, we aggregate all graph embeddings of an address into the address-level representation, and engage in a classification model to give the address behavior classification. As a side contribution, we construct and release a large-scale annotated dataset that consists of over 2 million real-world bitcoin addresses and concerns 4 types of address behaviors. Experimental results demonstrate that our proposed framework outperforms state-of-the-art bitcoin address classifiers and existing classification models, where the precision and F1-score are 96% and 95%, respectively. Our implementation and dataset are released, hoping to inspire others.


Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification

arXiv.org Machine Learning

Graph neural network (GNN) and label propagation algorithm (LPA) are both message passing algorithms, which have achieved superior performance in semi-supervised classification. GNN performs feature propagation by a neural network to make predictions, while LPA uses label propagation across graph adjacency matrix to get results. However, there is still no good way to combine these two kinds of algorithms. In this paper, we proposed a new Unified Message Passaging Model (UniMP) that can incorporate feature propagation and label propagation with a shared message passing network, providing a better performance in semi-supervised classification. First, we adopt a Graph Transformer jointly label embedding to propagate both the feature and label information. Second, to train UniMP without overfitting in self-loop label information, we propose a masked label prediction strategy, in which some percentage of training labels are simply masked at random, and then predicted. UniMP conceptually unifies feature propagation and label propagation and be empirically powerful. It obtains new state-of-the-art semi-supervised classification results in Open Graph Benchmark (OGB). Our implementation is available online https://github.com/PaddlePaddle/PGL/tree/main/ogb_examples/nodeproppred/unimp.