Goto

Collaborating Authors

Huang, Xin


CARPAL: Confidence-Aware Intent Recognition for Parallel Autonomy

arXiv.org Artificial Intelligence

Predicting the behavior of road agents is a difficult and crucial task for both advanced driver assistance and autonomous driving systems. Traditional confidence measures for this important task often ignore the way predicted trajectories affect downstream decisions and their utilities. In this paper we devise a novel neural network regressor to estimate the utility distribution given the predictions. Based on reasonable assumptions on the utility function, we establish a decision criterion that takes into account the role of prediction in decision making. We train our real-time regressor along with a human driver intent predictor and use it in shared autonomy scenarios where decisions depend on the prediction confidence. We test our system on a realistic urban driving dataset, present the advantage of the resulting system in terms of recall and fall-out performance compared to baseline methods, and demonstrate its effectiveness in intervention and warning use cases.


Diversity-Aware Vehicle Motion Prediction via Latent Semantic Sampling

arXiv.org Artificial Intelligence

--V ehicle trajectory prediction is crucial for autonomous driving and advanced driver assistant systems. While existing approaches may sample from a predicted distribution of vehicle trajectories, they lack the ability to explore it - a key ability for evaluating safety from a planning and verification perspective. In this work, we devise a novel approach for generating realistic and diverse vehicle trajectories. We extend the generative adversarial network (GAN) framework with a low-dimensional approximate semantic space, and shape that space to capture semantics such as merging and turning. We sample from this space in a way that mimics the predicted distribution, but allows us to control coverage of semantically distinct outcomes. We validate our approach on a publicly available dataset and show results that achieve state of the art prediction performance, while providing improved coverage of the space of predicted trajectory semantics. V ehicle trajectory prediction is crucial for autonomous driving and advanced driver assistant systems.


Fast Algorithm for K-Truss Discovery on Public-Private Graphs

arXiv.org Artificial Intelligence

In public-private graphs, users share one public graph and have their own private graphs. A private graph consists of personal private contacts that only can be visible to its owner, e.g., hidden friend lists on Facebook and secret following on Sina Weibo. However, existing public-private analytic algorithms have not yet investigated the dense subgraph discovery of k-truss, where each edge is contained in at least k-2 triangles. This paper aims at finding k-truss efficiently in public-private graphs. The core of our solution is a novel algorithm to update k-truss with node insertions. We develop a classification-based hybrid strategy of node insertions and edge insertions to incrementally compute k-truss in public-private graphs. Extensive experiments validate the superiority of our proposed algorithms against state-of-the-art methods on real-world datasets.


Semi-Unsupervised Lifelong Learning for Sentiment Classification: Less Manual Data Annotation and More Self-Studying

arXiv.org Artificial Intelligence

Lifelong machine learning is a novel machine learning paradigm which can continually accumulate knowledge during learning. The knowledge extracting and reusing abilities enable the lifelong machine learning to solve the related problems. The traditional approaches like Na\"ive Bayes and some neural network based approaches only aim to achieve the best performance upon a single task. Unlike them, the lifelong machine learning in this paper focuses on how to accumulate knowledge during learning and leverage them for further tasks. Meanwhile, the demand for labelled data for training also is significantly decreased with the knowledge reusing. This paper suggests that the aim of the lifelong learning is to use less labelled data and computational cost to achieve the performance as well as or even better than the supervised learning.


Hyperbolic Interaction Model For Hierarchical Multi-Label Classification

arXiv.org Machine Learning

Different from the traditional classification tasks which assume mutual exclusion of labels, hierarchical multi-label classification (HMLC) aims to assign multiple labels to every instance with the labels organized under hierarchical relations. In fact, linguistic ontologies are intrinsic hierarchies. Besides the labels, the conceptual relations between words can also form hierarchical structures. Thus it can be a challenge to learn mappings from the word space to the label space, and vice versa. We propose to model the word and label hierarchies by embedding them jointly in the hyperbolic space. The main reason is that the tree-likeness of the hyperbolic space matches the complexity of symbolic data with hierarchical structures. A new hyperbolic interaction model (HyperIM) is designed to learn the label-aware document representations and make predictions for HMLC. Extensive experiments are conducted on three benchmark datasets. The results have demonstrated that the new model can realistically capture the complex data structures and further improve the performance for HMLC comparing with the state-of-the-art methods. To facilitate future research, our code is publicly available.


Label-aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification

arXiv.org Machine Learning

Extreme multi-label text classification (XMTC) aims at tagging a document with most relevant labels from an extremely large-scale label set. It is a challenging problem especially for the tail labels because there are only few training documents to build classifier. This paper is motivated to better explore the semantic relationship between each document and extreme labels by taking advantage of both document content and label correlation. Our objective is to establish an explicit label-aware representation for each document with a hybrid attention deep neural network model(LAHA). LAHA consists of three parts. The first part adopts a multi-label self-attention mechanism to detect the contribution of each word to labels. The second part exploits the label structure and document content to determine the semantic connection between words and labels in a same latent space. An adaptive fusion strategy is designed in the third part to obtain the final label-aware document representation so that the essence of previous two parts can be sufficiently integrated. Extensive experiments have been conducted on six benchmark datasets by comparing with the state-of-the-art methods. The results show the superiority of our proposed LAHA method, especially on the tail labels.


CRAD: Clustering with Robust Autocuts and Depth

arXiv.org Machine Learning

Abstract--We develop a new density-based clustering algorithmclusters? The performance of CRAD is evaluated through extensive experimental studies. The number of observations in keywords-clustering, space-time processes, data depth cluster 3 is larger than that in clusters 1 and 2. The result of each algorithm is selected by searching the best clustering I. INTRODUCTION Clustering results are shown in Figure 1. Data depth methodology is a widely employed nonparametric Currently available methods such as DBCA, DBSCAN, and tool in multivariate and functional data analysis, with OPTICS, all fail to separate the cluster 1 and 2; in contrast, applications ranging from outlier detection to clustering and our new CRAD algorithm is able to detect both. Depth measures the "centrality" (or for this phenomenon is that both DBSCAN and DBCA use "outlyingness") of a given object with respect to an observed globally-defined parameters (i.e., ɛ and θ, respectively) to data cloud [4], [5].


Online Risk-Bounded Motion Planning for Autonomous Vehicles in Dynamic Environments

arXiv.org Artificial Intelligence

A crucial challenge to efficient and robust motion planning for autonomous vehicles is understanding the intentions of the surrounding agents. Ignoring the intentions of the other agents in dynamic environments can lead to risky or over-conservative plans. In this work, we model the motion planning problem as a partially observable Markov decision process (POMDP) and propose an online system that combines an intent recognition algorithm and a POMDP solver to generate risk-bounded plans for the ego vehicle navigating with a number of dynamic agent vehicles. The intent recognition algorithm predicts the probabilistic hybrid motion states of each agent vehicle over a finite horizon using Bayesian filtering and a library of pre-learned maneuver motion models. We update the POMDP model with the intent recognition results in real time and solve it using a heuristic search algorithm which produces policies with upper-bound guarantees on the probability of near colliding with other dynamic agents. We demonstrate that our system is able to generate better motion plans in terms of efficiency and safety in a number of challenging environments including unprotected intersection left turns and lane changes as compared to the baseline methods.


Uncertainty-Aware Driver Trajectory Prediction at Urban Intersections

arXiv.org Artificial Intelligence

Predicting the motion of a driver's vehicle is crucial for advanced driving systems, enabling detection of potential risks towards shared control between the driver and automation systems. In this paper, we propose a variational neural network approach that predicts future driver trajectory distributions for the vehicle based on multiple sensors. Our predictor generates both a conditional variational distribution of future trajectories, as well as a confidence estimate for different time horizons. Our approach allows us to handle inherently uncertain situations, and reason about information gain from each input, as well as combine our model with additional predictors, creating a mixture of experts. We show how to augment the variational predictor with a physics-based predictor, and based on their confidence estimations, improve overall system performance. The resulting combined model is aware of the uncertainty associated with its predictions, which can help the vehicle autonomy to make decisions with more confidence. The model is validated on real-world urban driving data collected in multiple locations. This validation demonstrates that our approach improves the prediction error of a physics-based model by 25% while successfully identifying the uncertain cases with 82% accuracy.


Adversarial Attack on Graph Structured Data

arXiv.org Machine Learning

Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.