Huang, Xiaomeng
BeamVQ: Beam Search with Vector Quantization to Mitigate Data Scarcity in Physical Spatiotemporal Forecasting
Wang, Weiyan, Shi, Xingjian, Shu, Ruiqi, Gao, Yuan, Chen, Rui Ray, Wang, Kun, Xu, Fan, Xue, Jinbao, Li, Shuaipeng, Tao, Yangyu, Wang, Di, Wu, Hao, Huang, Xiaomeng
In practice, physical spatiotemporal forecasting can suffer from data scarcity, because collecting large-scale data is non-trivial, especially for extreme events. Hence, we propose \method{}, a novel probabilistic framework to realize iterative self-training with new self-ensemble strategies, achieving better physical consistency and generalization on extreme events. Following any base forecasting model, we can encode its deterministic outputs into a latent space and retrieve multiple codebook entries to generate probabilistic outputs. Then BeamVQ extends the beam search from discrete spaces to the continuous state spaces in this field. We can further employ domain-specific metrics (e.g., Critical Success Index for extreme events) to filter out the top-k candidates and develop the new self-ensemble strategy by combining the high-quality candidates. The self-ensemble can not only improve the inference quality and robustness but also iteratively augment the training datasets during continuous self-training. Consequently, BeamVQ realizes the exploration of rare but critical phenomena beyond the original dataset. Comprehensive experiments on different benchmarks and backbones show that BeamVQ consistently reduces forecasting MSE (up to 39%), enhancing extreme events detection and proving its effectiveness in handling data scarcity.
OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Gao, Yuan, Wu, Hao, Shu, Ruiqi, Dong, Huanshuo, Xu, Fan, Chen, Rui, Yan, Yibo, Wen, Qingsong, Hu, Xuming, Wang, Kun, Wu, Jiahao, Li, Qing, Xiong, Hui, Huang, Xiaomeng
Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning methods have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework based on graph neural networks (GNNs). By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive information propagation mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that the proposed method performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions (e.g., typhoons), significantly improving forecast accuracy. Our codes are available at https://github.com/YuanGao-YG/OneForecast.
Improved Forecasts of Global Extreme Marine Heatwaves Through a Physics-guided Data-driven Approach
Shu, Ruiqi, Wu, Hao, Gao, Yuan, Xu, Fanghua, Gou, Ruijian, Huang, Xiaomeng
The unusually warm sea surface temperature events known as marine heatwaves (MHWs) have a profound impact on marine ecosystems. Accurate prediction of extreme MHWs has significant scientific and financial worth. However, existing methods still have certain limitations, especially in the most extreme MHWs. In this study, to address these issues, based on the physical nature of MHWs, we created a novel deep learning neural network that is capable of accurate 10-day MHW forecasting. Our framework significantly improves the forecast ability of extreme MHWs through two specially designed modules inspired by numerical models: a coupler and a probabilistic data argumentation. The coupler simulates the driving effect of atmosphere on MHWs while the probabilistic data argumentation approaches significantly boost the forecast ability of extreme MHWs based on the idea of ensemble forecast. Compared with traditional numerical prediction, our framework has significantly higher accuracy and requires fewer computational resources. What's more, explainable AI methods show that wind forcing is the primary driver of MHW evolution and reveal its relation with air-sea heat exchange. Overall, our model provides a framework for understanding MHWs' driving processes and operational forecasts in the future.
ADAF: An Artificial Intelligence Data Assimilation Framework for Weather Forecasting
Xiang, Yanfei, Jin, Weixin, Dong, Haiyu, Bai, Mingliang, Fang, Zuliang, Zhao, Pengcheng, Sun, Hongyu, Thambiratnam, Kit, Zhang, Qi, Huang, Xiaomeng
The forecasting skill of numerical weather prediction (NWP) models critically depends on the accurate initial conditions, also known as analysis, provided by data assimilation (DA). Traditional DA methods often face a trade-off between computational cost and accuracy due to complex linear algebra computations and the high dimensionality of the model, especially in nonlinear systems. Moreover, processing massive data in real-time requires substantial computational resources. To address this, we introduce an artificial intelligence-based data assimilation framework (ADAF) to generate high-quality kilometer-scale analysis. This study is the pioneering work using real-world observations from varied locations and multiple sources to verify the AI method's efficacy in DA, including sparse surface weather observations and satellite imagery. We implemented ADAF for four near-surface variables in the Contiguous United States (CONUS). The results indicate that ADAF surpasses the High Resolution Rapid Refresh Data Assimilation System (HRRRDAS) in accuracy by 16% to 33% for near-surface atmospheric conditions, aligning more closely with actual observations, and can effectively reconstruct extreme events, such as tropical cyclone wind fields. Sensitivity experiments reveal that ADAF can generate high-quality analysis even with low-accuracy backgrounds and extremely sparse surface observations. ADAF can assimilate massive observations within a three-hour window at low computational cost, taking about two seconds on an AMD MI200 graphics processing unit (GPU). ADAF has been shown to be efficient and effective in real-world DA, underscoring its potential role in operational weather forecasting.
BeamVQ: Aligning Space-Time Forecasting Model via Self-training on Physics-aware Metrics
Wu, Hao, Shi, Xingjian, Huang, Ziyue, Zhao, Penghao, Xiong, Wei, Xue, Jinbao, Tao, Yangyu, Huang, Xiaomeng, Wang, Weiyan
Data-driven deep learning has emerged as the new paradigm to model complex physical space-time systems. These data-driven methods learn patterns by optimizing statistical metrics and tend to overlook the adherence to physical laws, unlike traditional model-driven numerical methods. Thus, they often generate predictions that are not physically realistic. On the other hand, by sampling a large amount of high quality predictions from a data-driven model, some predictions will be more physically plausible than the others and closer to what will happen in the future. Based on this observation, we propose \emph{Beam search by Vector Quantization} (BeamVQ) to enhance the physical alignment of data-driven space-time forecasting models. The key of BeamVQ is to train model on self-generated samples filtered with physics-aware metrics. To be flexibly support different backbone architectures, BeamVQ leverages a code bank to transform any encoder-decoder model to the continuous state space into discrete codes. Afterwards, it iteratively employs beam search to sample high-quality sequences, retains those with the highest physics-aware scores, and trains model on the new dataset. Comprehensive experiments show that BeamVQ not only gave an average statistical skill score boost for more than 32% for ten backbones on five datasets, but also significantly enhances physics-aware metrics.
MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations
Hu, Jing, Zhang, Honghu, Zheng, Peng, Mu, Jialin, Huang, Xiaomeng, Wu, Xi
Addressing complex meteorological processes at a fine spatial resolution requires substantial computational resources. To accelerate meteorological simulations, researchers have utilized neural networks to downscale meteorological variables from low-resolution simulations. Despite notable advancements, contemporary cutting-edge downscaling algorithms tailored to specific variables. Addressing meteorological variables in isolation overlooks their interconnectedness, leading to an incomplete understanding of atmospheric dynamics. Additionally, the laborious processes of data collection, annotation, and computational resources required for individual variable downscaling are significant hurdles. Given the limited versatility of existing models across different meteorological variables and their failure to account for inter-variable relationships, this paper proposes a unified downscaling approach leveraging meta-learning. This framework aims to facilitate the downscaling of diverse meteorological variables derived from various numerical models and spatiotemporal scales. Trained at variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS, the proposed method can be extended to downscale convective precipitation, potential energy, height, humidity and ozone from CFS, S2S and CMIP6 at different spatiotemporal scales, which demonstrating its capability to capture the interconnections among diverse variables. Our approach represents the initial effort to create a generalized downscaling model. Experimental evidence demonstrates that the proposed model outperforms existing top downscaling methods in both quantitative and qualitative assessments.
TeleChat Technical Report
Wang, Zihan, Liu, Xinzhang, Liu, Shixuan, Yao, Yitong, Huang, Yuyao, He, Zhongjiang, Li, Xuelong, Li, Yongxiang, Che, Zhonghao, Zhang, Zhaoxi, Wang, Yan, Wang, Xin, Pu, Luwen, Xu, Huihan, Fang, Ruiyu, Zhao, Yu, Zhang, Jie, Huang, Xiaomeng, Lu, Zhilong, Peng, Jiaxin, Zheng, Wenjun, Wang, Shiquan, Yang, Bingkai, he, Xuewei, Jiang, Zhuoru, Xie, Qiyi, Zhang, Yanhan, Li, Zhongqiu, Shi, Lingling, Fu, Weiwei, Zhang, Yin, Huang, Zilu, Xiong, Sishi, Zhang, Yuxiang, Wang, Chao, Song, Shuangyong
In this technical report, we present TeleChat, a collection of large language models (LLMs) with parameters of 3 billion, 7 billion and 12 billion. It includes pretrained language models as well as fine-tuned chat models that is aligned with human preferences. TeleChat is initially pretrained on an extensive corpus containing a diverse collection of texts from both English and Chinese languages, including trillions of tokens. Subsequently, the model undergoes fine-tuning to align with human preferences, following a detailed methodology that we describe. We evaluate the performance of TeleChat on various tasks, including language understanding, mathematics, reasoning, code generation, and knowledge-based question answering. Our findings indicate that TeleChat achieves comparable performance to other open-source models of similar size across a wide range of public benchmarks. To support future research and applications utilizing LLMs, we release the fine-tuned model checkpoints of TeleChat's 7B and 12B variant, along with code and a portion of our pretraining data, to the public community.
AI-GOMS: Large AI-Driven Global Ocean Modeling System
Xiong, Wei, Xiang, Yanfei, Wu, Hao, Zhou, Shuyi, Sun, Yuze, Ma, Muyuan, Huang, Xiaomeng
Ocean modeling is a powerful tool for simulating the physical, chemical, and biological processes of the ocean, which is the foundation for marine science research and operational oceanography. Modern numerical ocean modeling mainly consists of governing equations and numerical algorithms. Nonlinear instability, computational expense, low reusability efficiency and high coupling costs have gradually become the main bottlenecks for the further development of numerical ocean modeling. Recently, artificial intelligence-based modeling in scientific computing has shown revolutionary potential for digital twins and scientific simulations, but the bottlenecks of numerical ocean modeling have not been further solved. Here, we present AI-GOMS, a large AI-driven global ocean modeling system, for accurate and efficient global ocean daily prediction. AI-GOMS consists of a backbone model with the Fourier-based Masked Autoencoder structure for basic ocean variable prediction and lightweight fine-tuning models incorporating regional downscaling, wave decoding, and biochemistry coupling modules. AI-GOMS has achieved the best performance in 30 days of prediction for the global ocean basic variables with 15 depth layers at 1/4{\deg} spatial resolution. Beyond the good performance in statistical metrics, AI-GOMS realizes the simulation of mesoscale eddies in the Kuroshio region at 1/12{\deg} spatial resolution and ocean stratification in the tropical Pacific Ocean. AI-GOMS provides a new backbone-downstream paradigm for Earth system modeling, which makes the system transferable, scalable and reusable.
Intelligent model for offshore China sea fog forecasting
Xiang, Yanfei, Zhang, Qinghong, Wang, Mingqing, Xia, Ruixue, Kong, Yang, Huang, Xiaomeng
Accurate and timely prediction of sea fog is very important for effectively managing maritime and coastal economic activities. Given the intricate nature and inherent variability of sea fog, traditional numerical and statistical forecasting methods are often proven inadequate. This study aims to develop an advanced sea fog forecasting method embedded in a numerical weather prediction model using the Yangtze River Estuary (YRE) coastal area as a case study. Prior to training our machine learning model, we employ a time-lagged correlation analysis technique to identify key predictors and decipher the underlying mechanisms driving sea fog occurrence. In addition, we implement ensemble learning and a focal loss function to address the issue of imbalanced data, thereby enhancing the predictive ability of our model. To verify the accuracy of our method, we evaluate its performance using a comprehensive dataset spanning one year, which encompasses both weather station observations and historical forecasts. Remarkably, our machine learning-based approach surpasses the predictive performance of two conventional methods, the weather research and forecasting nonhydrostatic mesoscale model (WRF-NMM) and the algorithm developed by the National Oceanic and Atmospheric Administration (NOAA) Forecast Systems Laboratory (FSL). Specifically, in regard to predicting sea fog with a visibility of less than or equal to 1 km with a lead time of 60 hours, our methodology achieves superior results by increasing the probability of detection (POD) while simultaneously reducing the false alarm ratio (FAR).
KoopmanLab: machine learning for solving complex physics equations
Xiong, Wei, Ma, Muyuan, Huang, Xiaomeng, Zhang, Ziyang, Sun, Pei, Tian, Yang
Numerous physics theories are rooted in partial differential equations (PDEs). However, the increasingly intricate physics equations, especially those that lack analytic solutions or closed forms, have impeded the further development of physics. Computationally solving PDEs by classic numerical approaches suffers from the trade-off between accuracy and efficiency and is not applicable to the empirical data generated by unknown latent PDEs. To overcome this challenge, we present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms. Our module consists of multiple variants of the Koopman neural operator (KNO), a kind of mesh-independent neural-network-based PDE solvers developed following dynamic system theory. The compact variants of KNO can accurately solve PDEs with small model sizes while the large variants of KNO are more competitive in predicting highly complicated dynamic systems govern by unknown, high-dimensional, and non-linear PDEs. All variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation in fluid mechanics) and ERA5 (i.e., one of the largest high-resolution global-scale climate data sets in earth physics). These demonstrations suggest the potential of KoopmanLab to be a fundamental tool in diverse physics studies related to equations or dynamic systems.