Huang, Siteng
Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Yu, Xiaomin, Ding, Pengxiang, Zhang, Wenjie, Huang, Siteng, Gao, Songyang, Qin, Chengwei, Wu, Kejian, Fan, Zhaoxin, Qiao, Ziyue, Wang, Donglin
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
Humanoid-VLA: Towards Universal Humanoid Control with Visual Integration
Ding, Pengxiang, Ma, Jianfei, Tong, Xinyang, Zou, Binghong, Luo, Xinxin, Fan, Yiguo, Wang, Ting, Lu, Hongchao, Mo, Panzhong, Liu, Jinxin, Wang, Yuefan, Zhou, Huaicheng, Feng, Wenshuo, Liu, Jiacheng, Huang, Siteng, Wang, Donglin
This paper addresses the limitations of current humanoid robot control frameworks, which primarily rely on reactive mechanisms and lack autonomous interaction capabilities due to data scarcity. We propose Humanoid-VLA, a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control. Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions, allowing the model to learn universal motion patterns and action semantics. We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation. Furthermore, we introduce a self-supervised data augmentation strategy that automatically generates pseudoannotations directly derived from motion data. This process converts raw motion sequences into informative question-answer pairs, facilitating the effective use of large-scale unlabeled video data. Built upon whole-body control architectures, extensive experiments show that Humanoid-VLA achieves object interaction and environment exploration tasks with enhanced contextual awareness, demonstrating a more human-like capacity for adaptive and intelligent engagement.
QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning
Tong, Xinyang, Ding, Pengxiang, Wang, Donglin, Zhang, Wenjie, Cui, Can, Sun, Mingyang, Fan, Yiguo, Zhao, Han, Zhang, Hongyin, Dang, Yonghao, Huang, Siteng, Lyu, Shangke
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
CARP: Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction
Gong, Zhefei, Ding, Pengxiang, Lyu, Shangke, Huang, Siteng, Sun, Mingyang, Zhao, Wei, Fan, Zhaoxin, Wang, Donglin
In robotic visuomotor policy learning, diffusion-based models have achieved significant success in improving the accuracy of action trajectory generation compared to traditional autoregressive models. However, they suffer from inefficiency due to multiple denoising steps and limited flexibility from complex constraints. In this paper, we introduce Coarse-to-Fine AutoRegressive Policy (CARP), a novel paradigm for visuomotor policy learning that redefines the autoregressive action generation process as a coarse-to-fine, next-scale approach. CARP decouples action generation into two stages: first, an action autoencoder learns multi-scale representations of the entire action sequence; then, a GPT-style transformer refines the sequence prediction through a coarse-to-fine autoregressive process. This straightforward and intuitive approach produces highly accurate and smooth actions, matching or even surpassing the performance of diffusion-based policies while maintaining efficiency on par with autoregressive policies. We conduct extensive evaluations across diverse settings, including single-task and multi-task scenarios on state-based and image-based simulation benchmarks, as well as real-world tasks. CARP achieves competitive success rates, with up to a 10% improvement, and delivers 10x faster inference compared to state-of-the-art policies, establishing a high-performance, efficient, and flexible paradigm for action generation in robotic tasks.
Accelerating Diffusion Transformers with Token-wise Feature Caching
Zou, Chang, Liu, Xuyang, Liu, Ting, Huang, Siteng, Zhang, Linfeng
Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10$\times$ more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-$\alpha$, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36$\times$ and 1.93$\times$ acceleration are achieved on OpenSora and PixArt-$\alpha$ with almost no drop in generation quality.
Score and Distribution Matching Policy: Advanced Accelerated Visuomotor Policies via Matched Distillation
Jia, Bofang, Ding, Pengxiang, Cui, Can, Sun, Mingyang, Qian, Pengfang, Huang, Siteng, Fan, Zhaoxin, Wang, Donglin
Visual-motor policy learning has advanced with architectures like diffusion-based policies, known for modeling complex robotic trajectories. However, their prolonged inference times hinder high-frequency control tasks requiring real-time feedback. While consistency distillation (CD) accelerates inference, it introduces errors that compromise action quality. To address these limitations, we propose the Score and Distribution Matching Policy (SDM Policy), which transforms diffusion-based policies into single-step generators through a two-stage optimization process: score matching ensures alignment with true action distributions, and distribution matching minimizes KL divergence for consistency. A dual-teacher mechanism integrates a frozen teacher for stability and an unfrozen teacher for adversarial training, enhancing robustness and alignment with target distributions. Evaluated on a 57-task simulation benchmark, SDM Policy achieves a 6x inference speedup while having state-of-the-art action quality, providing an efficient and reliable framework for high-frequency robotic tasks.
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Huang, Siteng, Gong, Biao, Feng, Yutong, Lv, Yiliang, Wang, Donglin
Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representation of seen compositions, these methods ignore the explicit modeling of the state and object, thus limiting the exploitation of pre-trained knowledge and generalization to unseen compositions. With a particular focus on the universality of the solution, in this work, we propose a novel paradigm for CZSL models that establishes three identification branches (i.e., Multi-Path) to jointly model the state, object, and composition. The presented Troika is our implementation that aligns the branch-specific prompt representations with decomposed visual features. To calibrate the bias between semantically similar multi-modal representations, we further devise a Cross-Modal Traction module into Troika that shifts the prompt representation towards the current visual content. We conduct extensive experiments on three popular benchmarks, where our method significantly outperforms existing methods in both closed-world and open-world settings.
VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal Retrieval
Huang, Siteng, Gong, Biao, Pan, Yulin, Jiang, Jianwen, Lv, Yiliang, Li, Yuyuan, Wang, Donglin
Many recent studies leverage the pre-trained CLIP for text-video cross-modal retrieval by tuning the backbone with additional heavy modules, which not only brings huge computational burdens with much more parameters, but also leads to the knowledge forgetting from upstream models. In this work, we propose the VoP: Text-Video Co-operative Prompt Tuning for efficient tuning on the text-video retrieval task. The proposed VoP is an end-to-end framework with both video & text prompts introducing, which can be regarded as a powerful baseline with only 0.1% trainable parameters. Further, based on the spatio-temporal characteristics of videos, we develop three novel video prompt mechanisms to improve the performance with different scales of trainable parameters. The basic idea of the VoP enhancement is to model the frame position, frame context, and layer function with specific trainable prompts, respectively. Extensive experiments show that compared to full fine-tuning, the enhanced VoP achieves a 1.4% average R@1 gain across five text-video retrieval benchmarks with 6x less parameter overhead. The code will be available at https://github.com/bighuang624/VoP.