Goto

Collaborating Authors

 Huang, Kuan-Po


How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario

arXiv.org Artificial Intelligence

The utilization of speech Self-Supervised Learning (SSL) models achieves impressive performance on Automatic Speech Recognition (ASR). However, in low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages. Typical solutions like fine-tuning the SSL model suffer from high computation costs while using frozen SSL models as feature extractors comes with poor performance. To handle these issues, we extend a conventional efficient fine-tuning scheme based on the adapter. We add an extra intermediate adaptation to warm up the adapter and downstream model initialization. Remarkably, we update only 1-5% of the total model parameters to achieve the adaptation. Experimental results on the ML-SUPERB dataset show that our solution outperforms conventional efficient fine-tuning. It achieves up to a 28% relative improvement in the Character/Phoneme error rate when adapting to unseen languages.


Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling

arXiv.org Artificial Intelligence

Multilingual Automatic Speech Recognition (ASR) aims to recognize and transcribe speech from multiple languages within a single system. Whisper, one of the most advanced ASR models, excels in this domain by handling 99 languages effectively, leveraging a vast amount of data and incorporating language tags as prefixes to guide the recognition process. However, despite its success, Whisper struggles with unseen languages, those not included in its pre-training. Motivated by the observation that many languages share linguistic characteristics, we propose methods that exploit these relationships to enhance ASR performance on unseen languages. Specifically, we introduce a weighted sum method, which computes a weighted sum of the embeddings of language tags, using Whisper's predicted language probabilities. In addition, we develop a predictor-based approach that refines the weighted sum embedding to more closely approximate the true embedding for unseen languages. Experimental results demonstrate substantial improvements in ASR performance, both in zero-shot and fine-tuning settings. Our proposed methods outperform baseline approaches, providing an effective solution for addressing unseen languages in multilingual ASR.


Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks

arXiv.org Artificial Intelligence

Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.


Do Prompts Really Prompt? Exploring the Prompt Understanding Capability of Whisper

arXiv.org Artificial Intelligence

This research explores how the information of prompts interacts with the high-performing speech recognition model, Whisper. We compare its performances when prompted by prompts with correct information and those corrupted with incorrect information. Our results unexpectedly show that Whisper may not understand the textual prompts in a human-expected way. Additionally, we find that performance improvement is not guaranteed even with stronger adherence to the topic information in textual prompts. It is also noted that English prompts generally outperform Mandarin ones on datasets of both languages, likely due to differences in training data distributions for these languages despite the mismatch with pre-training scenarios. Conversely, we discover that Whisper exhibits awareness of misleading information in language tokens by ignoring incorrect language tokens and focusing on the correct ones. In sum, We raise insightful questions about Whisper's prompt understanding and reveal its counter-intuitive behaviors. We encourage further studies.


Investigating Zero-Shot Generalizability on Mandarin-English Code-Switched ASR and Speech-to-text Translation of Recent Foundation Models with Self-Supervision and Weak Supervision

arXiv.org Artificial Intelligence

This work evaluated several cutting-edge large-scale foundation models based on self-supervision or weak supervision, including SeamlessM4T, SeamlessM4T v2, and Whisper-large-v3, on three code-switched corpora. We found that self-supervised models can achieve performances close to the supervised model, indicating the effectiveness of multilingual self-supervised pre-training. We also observed that these models still have room for improvement as they kept making similar mistakes and had unsatisfactory performances on modeling intra-sentential code-switching. In addition, the validity of several variants of Whisper was explored, and we concluded that they remained effective in a code-switching scenario, and similar techniques for self-supervised models are worth studying to boost the performance of code-switched tasks.


Zero Resource Code-switched Speech Benchmark Using Speech Utterance Pairs For Multiple Spoken Languages

arXiv.org Artificial Intelligence

We introduce a new zero resource code-switched speech benchmark designed to directly assess the code-switching capabilities of self-supervised speech encoders. We showcase a baseline system of language modeling on discrete units to demonstrate how the code-switching abilities of speech encoders can be assessed in a zero-resource manner. Our experiments encompass a variety of well-known speech encoders, including Wav2vec 2.0, HuBERT, XLSR, etc. We examine the impact of pre-training languages and model size on benchmark performance. Notably, though our results demonstrate that speech encoders with multilingual pre-training, exemplified by XLSR, outperform monolingual variants (Wav2vec 2.0, HuBERT) in code-switching scenarios, there is still substantial room for improvement in their code-switching linguistic abilities.


Ensemble knowledge distillation of self-supervised speech models

arXiv.org Artificial Intelligence

Distilled self-supervised models have shown competitive performance and efficiency in recent years. However, there is a lack of experience in jointly distilling multiple self-supervised speech models. In our work, we performed Ensemble Knowledge Distillation (EKD) on various self-supervised speech models such as HuBERT, RobustHuBERT, and WavLM. We tried two different aggregation techniques, layerwise-average and layerwise-concatenation, to the representations of different teacher models and found that the former was more effective. On top of that, we proposed a multiple prediction head method for student models to predict different layer outputs of multiple teacher models simultaneously. The experimental results show that our method improves the performance of the distilled models on four downstream speech processing tasks, Phoneme Recognition, Speaker Identification, Emotion Recognition, and Automatic Speech Recognition in the hidden-set track of the SUPERB benchmark.