Goto

Collaborating Authors

 Huang, Kaizhu


IDEA: Image Description Enhanced CLIP-Adapter

arXiv.org Artificial Intelligence

CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.


Template-Driven LLM-Paraphrased Framework for Tabular Math Word Problem Generation

arXiv.org Artificial Intelligence

Solving tabular math word problems (TMWPs) has become a critical role in evaluating the mathematical reasoning ability of large language models (LLMs), where large-scale TMWP samples are commonly required for LLM fine-tuning. Since the collection of high-quality TMWP datasets is costly and time-consuming, recent research has concentrated on automatic TMWP generation. However, current generated samples usually suffer from issues of either correctness or diversity. In this paper, we propose a Template-driven LLM-paraphrased (TeLL) framework for generating high-quality TMWP samples with diverse backgrounds and accurate tables, questions, answers, and solutions. To this end, we first extract templates from existing real samples to generate initial problems, ensuring correctness. Then, we adopt an LLM to extend templates and paraphrase problems, obtaining diverse TMWP samples. Furthermore, we find the reasoning annotation is important for solving TMWPs. Therefore, we propose to enrich each solution with illustrative reasoning steps. Through the proposed framework, we construct a high-quality dataset TabMWP-TeLL by adhering to the question types in the TabMWP dataset, and we conduct extensive experiments on a variety of LLMs to demonstrate the effectiveness of TabMWP-TeLL in improving TMWP solving performance. The code and data of this paper are available at: https://github.com/Jason8Kang/TELL.


Towards Cross-device and Training-free Robotic Grasping in 3D Open World

arXiv.org Artificial Intelligence

Robotic grasping in the open world is a critical component of manufacturing and automation processes. While numerous existing approaches depend on 2D segmentation output to facilitate the grasping procedure, accurately determining depth from 2D imagery remains a challenge, often leading to limited performance in complex stacking scenarios. In contrast, techniques utilizing 3D point cloud data inherently capture depth information, thus enabling adeptly navigating and manipulating a diverse range of complex stacking scenes. However, such efforts are considerably hindered by the variance in data capture devices and the unstructured nature of the data, which limits their generalizability. Consequently, much research is narrowly concentrated on managing designated objects within specific settings, which confines their real-world applicability. This paper presents a novel pipeline capable of executing object grasping tasks in open-world scenarios even on previously unseen objects without the necessity for training. Additionally, our pipeline supports the flexible use of different 3D point cloud segmentation models across a variety of scenes. Leveraging the segmentation results, we propose to engage a training-free binary clustering algorithm that not only improves segmentation precision but also possesses the capability to cluster and localize unseen objects for executing grasping operations. In our experiments, we investigate a range of open-world scenarios, and the outcomes underscore the remarkable robustness and generalizability of our pipeline, consistent across various environments, robots, cameras, and objects. The code will be made available upon acceptance of the paper.


A comprehensive survey of oracle character recognition: challenges, benchmarks, and beyond

arXiv.org Artificial Intelligence

Oracle character recognition-an analysis of ancient Chinese inscriptions found on oracle bones-has become a pivotal field intersecting archaeology, paleography, and historical cultural studies. Traditional methods of oracle character recognition have relied heavily on manual interpretation by experts, which is not only labor-intensive but also limits broader accessibility to the general public. With recent breakthroughs in pattern recognition and deep learning, there is a growing movement towards the automation of oracle character recognition (OrCR), showing considerable promise in tackling the challenges inherent to these ancient scripts. However, a comprehensive understanding of OrCR still remains elusive. Therefore, this paper presents a systematic and structured survey of the current landscape of OrCR research. We commence by identifying and analyzing the key challenges of OrCR. Then, we provide an overview of the primary benchmark datasets and digital resources available for OrCR. A review of contemporary research methodologies follows, in which their respective efficacies, limitations, and applicability to the complex nature of oracle characters are critically highlighted and examined. Additionally, our review extends to ancillary tasks associated with OrCR across diverse disciplines, providing a broad-spectrum analysis of its applications. We conclude with a forward-looking perspective, proposing potential avenues for future investigations that could yield significant advancements in the field.


Decentralizing Test-time Adaptation under Heterogeneous Data Streams

arXiv.org Artificial Intelligence

While Test-Time Adaptation (TTA) has shown promise in addressing distribution shifts between training and testing data, its effectiveness diminishes with heterogeneous data streams due to uniform target estimation. As previous attempts merely stabilize model fine-tuning over time to handle continually changing environments, they fundamentally assume a homogeneous target domain at any moment, leaving the intrinsic real-world data heterogeneity unresolved. This paper delves into TTA under heterogeneous data streams, moving beyond current model-centric limitations. By revisiting TTA from a data-centric perspective, we discover that decomposing samples into Fourier space facilitates an accurate data separation across different frequency levels. Drawing from this insight, we propose a novel Frequency-based Decentralized Adaptation (FreDA) framework, which transitions data from globally heterogeneous to locally homogeneous in Fourier space and employs decentralized adaptation to manage diverse distribution shifts.Interestingly, we devise a novel Fourier-based augmentation strategy to assist in decentralizing adaptation, which individually enhances sample quality for capturing each type of distribution shifts. Extensive experiments across various settings (corrupted, natural, and medical environments) demonstrate the superiority of our proposed framework over the state-of-the-arts.


Personalize to generalize: Towards a universal medical multi-modality generalization through personalization

arXiv.org Artificial Intelligence

The differences among medical imaging modalities, driven by distinct underlying principles, pose significant challenges for generalization in multi-modal medical tasks. Beyond modality gaps, individual variations, such as differences in organ size and metabolic rate, further impede a model's ability to generalize effectively across both modalities and diverse populations. Despite the importance of personalization, existing approaches to multi-modal generalization often neglect individual differences, focusing solely on common anatomical features. This limitation may result in weakened generalization in various medical tasks. In this paper, we unveil that personalization is critical for multi-modal generalization. Specifically, we propose an approach to achieve personalized generalization through approximating the underlying personalized invariant representation ${X}_h$ across various modalities by leveraging individual-level constraints and a learnable biological prior. We validate the feasibility and benefits of learning a personalized ${X}_h$, showing that this representation is highly generalizable and transferable across various multi-modal medical tasks. Extensive experimental results consistently show that the additionally incorporated personalization significantly improves performance and generalization across diverse scenarios, confirming its effectiveness.


Interpret Your Decision: Logical Reasoning Regularization for Generalization in Visual Classification

arXiv.org Artificial Intelligence

Vision models excel in image classification but struggle to generalize to unseen data, such as classifying images from unseen domains or discovering novel categories. In this paper, we explore the relationship between logical reasoning and deep learning generalization in visual classification. A logical regularization termed L-Reg is derived which bridges a logical analysis framework to image classification. Our work reveals that L-Reg reduces the complexity of the model in terms of the feature distribution and classifier weights. Specifically, we unveil the interpretability brought by L-Reg, as it enables the model to extract the salient features, such as faces to persons, for classification. Theoretical analysis and experiments demonstrate that L-Reg enhances generalization across various scenarios, including multi-domain generalization and generalized category discovery. In complex real-world scenarios where images span unknown classes and unseen domains, L-Reg consistently improves generalization, highlighting its practical efficacy.


Navigating Distribution Shifts in Medical Image Analysis: A Survey

arXiv.org Artificial Intelligence

Medical Image Analysis (MedIA) has become indispensable in modern healthcare, enhancing clinical diagnostics and personalized treatment. Despite the remarkable advancements supported by deep learning (DL) technologies, their practical deployment faces challenges due to distribution shifts, where models trained on specific datasets underperform across others from varying hospitals, regions, or patient populations. To navigate this issue, researchers have been actively developing strategies to increase the adaptability and robustness of DL models, enabling their effective use in unfamiliar and diverse environments. This paper systematically reviews approaches that apply DL techniques to MedIA systems affected by distribution shifts. Unlike traditional categorizations based on technical specifications, our approach is grounded in the real-world operational constraints faced by healthcare institutions. Specifically, we categorize the existing body of work into Joint Training, Federated Learning, Fine-tuning, and Domain Generalization, with each method tailored to distinct scenarios caused by Data Accessibility, Privacy Concerns, and Collaborative Protocols. This perspective equips researchers with a nuanced understanding of how DL can be strategically deployed to address distribution shifts in MedIA, ensuring diverse and robust medical applications. By delving deeper into these topics, we highlight potential pathways for future research that not only address existing limitations but also push the boundaries of deployable MedIA technologies.


Covariance-based Space Regularization for Few-shot Class Incremental Learning

arXiv.org Artificial Intelligence

Few-shot Class Incremental Learning (FSCIL) presents a challenging yet realistic scenario, which requires the model to continually learn new classes with limited labeled data (i.e., incremental sessions) while retaining knowledge of previously learned base classes (i.e., base sessions). Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes. To tackle these issues, recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes. Despite the progress, the limited data issue still induces ill-divided feature space, leading the model to confuse the new class with old classes or fail to facilitate good separation among new classes. In this paper, we aim to mitigate these issues by directly constraining the span of each class distribution from a covariance perspective. In detail, we propose a simple yet effective covariance constraint loss to force the model to learn each class distribution with the same covariance matrix. In addition, we propose a perturbation approach to perturb the few-shot training samples in the feature space, which encourages the samples to be away from the weighted distribution of other classes. Regarding perturbed samples as new class data, the classifier is forced to establish explicit boundaries between each new class and the existing ones. Our approach is easy to integrate into existing FSCIL approaches to boost performance. Experiments on three benchmarks validate the effectiveness of our approach, achieving a new state-of-the-art performance of FSCIL.


Mind the Gap: Promoting Missing Modality Brain Tumor Segmentation with Alignment

arXiv.org Artificial Intelligence

Brain tumor segmentation is often based on multiple magnetic resonance imaging (MRI). However, in clinical practice, certain modalities of MRI may be missing, which presents an even more difficult scenario. To cope with this challenge, knowledge distillation has emerged as one promising strategy. However, recent efforts typically overlook the modality gaps and thus fail to learn invariant feature representations across different modalities. Such drawback consequently leads to limited performance for both teachers and students. To ameliorate these problems, in this paper, we propose a novel paradigm that aligns latent features of involved modalities to a well-defined distribution anchor. As a major contribution, we prove that our novel training paradigm ensures a tight evidence lower bound, thus theoretically certifying its effectiveness. Extensive experiments on different backbones validate that the proposed paradigm can enable invariant feature representations and produce a teacher with narrowed modality gaps. This further offers superior guidance for missing modality students, achieving an average improvement of 1.75 on dice score.