Goto

Collaborating Authors

 Huang, Jimmy Xiangji


Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care

arXiv.org Artificial Intelligence

This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements-rather than replaces-human expertise.


How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond

arXiv.org Artificial Intelligence

Advancements in NLP research have been greatly Given all these elements, the information propelled by large language models (LLMs), which on particular details about how to formalize an have showcased exceptional abilities (Zhao et al., effective human-model cooperation to achieve 2023; Laskar et al., 2024). These advancements are collective outputs is rather under-specified and paving the way for the development of AI models scattered. Therefore, a comprehensive and systematic that can behave as autonomous agents, working analysis of the underlying principles and alongside humans to tackle intricate tasks. These formalizations of human-model cooperation is still models, for example, can cooperate with humans absent. This gap in understanding presents a significant on data annotation (Klie et al., 2020; Li et al., opportunity for advancement, enabling us 2023a; Huang et al., 2024c), information seeking to develop a deeper understanding of the fundamental (Deng et al., 2023a; Wang et al., 2023b; Zhang basics that govern the effective cooperation et al., 2024d), creative writing (Padmakumar and between humans and intelligent models. He, 2022; Akoury et al., 2020) and real-world problem To fill this gap, in this survey, we take the first solving (Mehta et al., 2023; Feng et al., 2024; step to summarize the principles, formalizations, Qian et al., 2024).


A Diversity-Enhanced Knowledge Distillation Model for Practical Math Word Problem Solving

arXiv.org Artificial Intelligence

Math Word Problem (MWP) solving is a critical task in natural language processing, has garnered significant research interest in recent years. Various recent studies heavily rely on Seq2Seq models and their extensions (e.g., Seq2Tree and Graph2Tree) to generate mathematical equations. While effective, these models struggle to generate diverse but counterpart solution equations, limiting their generalization across various math problem scenarios. In this paper, we introduce a novel Diversity-enhanced Knowledge Distillation (DivKD) model for practical MWP solving. Our approach proposes an adaptive diversity distillation method, in which a student model learns diverse equations by selectively transferring high-quality knowledge from a teacher model. Additionally, we design a diversity prior-enhanced student model to better capture the diversity distribution of equations by incorporating a conditional variational auto-encoder. Extensive experiments on {four} MWP benchmark datasets demonstrate that our approach achieves higher answer accuracy than strong baselines while maintaining high efficiency for practical applications.


Learning to Ask: Conversational Product Search via Representation Learning

arXiv.org Artificial Intelligence

Online shopping platforms, such as Amazon and AliExpress, are increasingly prevalent in society, helping customers purchase products conveniently. With recent progress in natural language processing, researchers and practitioners shift their focus from traditional product search to conversational product search. Conversational product search enables user-machine conversations and through them collects explicit user feedback that allows to actively clarify the users' product preferences. Therefore, prospective research on an intelligent shopping assistant via conversations is indispensable. Existing publications on conversational product search either model conversations independently from users, queries, and products or lead to a vocabulary mismatch. In this work, we propose a new conversational product search model, ConvPS, to assist users in locating desirable items. The model is first trained to jointly learn the semantic representations of user, query, item, and conversation via a unified generative framework. After learning these representations, they are integrated to retrieve the target items in the latent semantic space. Meanwhile, we propose a set of greedy and explore-exploit strategies to learn to ask the user a sequence of high-performance questions for conversations. Our proposed ConvPS model can naturally integrate the representation learning of the user, query, item, and conversation into a unified generative framework, which provides a promising avenue for constructing accurate and robust conversational product search systems that are flexible and adaptive. Experimental results demonstrate that our ConvPS model significantly outperforms state-of-the-art baselines.


One Subgraph for All: Efficient Reasoning on Opening Subgraphs for Inductive Knowledge Graph Completion

arXiv.org Artificial Intelligence

Knowledge Graph Completion (KGC) has garnered massive research interest recently, and most existing methods are designed following a transductive setting where all entities are observed during training. Despite the great progress on the transductive KGC, these methods struggle to conduct reasoning on emerging KGs involving unseen entities. Thus, inductive KGC, which aims to deduce missing links among unseen entities, has become a new trend. Many existing studies transform inductive KGC as a graph classification problem by extracting enclosing subgraphs surrounding each candidate triple. Unfortunately, they still face certain challenges, such as the expensive time consumption caused by the repeat extraction of enclosing subgraphs, and the deficiency of entity-independent feature learning. To address these issues, we propose a global-local anchor representation (GLAR) learning method for inductive KGC. Unlike previous methods that utilize enclosing subgraphs, we extract a shared opening subgraph for all candidates and perform reasoning on it, enabling the model to perform reasoning more efficiently. Moreover, we design some transferable global and local anchors to learn rich entity-independent features for emerging entities. Finally, a global-local graph reasoning model is applied on the opening subgraph to rank all candidates. Extensive experiments show that our GLAR outperforms most existing state-of-the-art methods.


A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets

arXiv.org Artificial Intelligence

The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT's performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT's performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.


Prompt Learning to Mitigate Catastrophic Forgetting in Cross-lingual Transfer for Open-domain Dialogue Generation

arXiv.org Artificial Intelligence

Dialogue systems for non-English languages have long been under-explored. In this paper, we take the first step to investigate few-shot cross-lingual transfer learning (FS-XLT) and multitask learning (MTL) in the context of open-domain dialogue generation for non-English languages with limited data. We observed catastrophic forgetting in both FS-XLT and MTL for all 6 languages in our preliminary experiments. To mitigate the issue, we propose a simple yet effective prompt learning approach that can preserve the multilinguality of multilingual pre-trained language model (mPLM) in FS-XLT and MTL by bridging the gap between pre-training and fine-tuning with Fixed-prompt LM Tuning and our hand-crafted prompts. Experimental results on all 6 languages in terms of both automatic and human evaluations demonstrate the effectiveness of our approach. Our code is available at https://github.com/JeremyLeiLiu/XLinguDial.


Domain Adaptation with Pre-trained Transformers for Query Focused Abstractive Text Summarization

arXiv.org Artificial Intelligence

The Query Focused Text Summarization (QFTS) task aims at building systems that generate the summary of the text document(s) based on the given query. A key challenge in addressing this task is the lack of large labeled data for training the summarization model. In this paper, we address this challenge by exploring a series of domain adaptation techniques. Given the recent success of pre-trained transformer models in a wide range of natural language processing tasks, we utilize such models to generate abstractive summaries for the QFTS task for both single-document and multi-document scenarios. For domain adaptation, we apply a variety of techniques using pre-trained transformer-based summarization models including transfer learning, weakly supervised learning, and distant supervision. Extensive experiments on six datasets show that our proposed approach is very effective in generating abstractive summaries for the QFTS task while setting a new state-of-the-art result in several datasets across a set of automatic and human evaluation metrics.


Graph-Enhanced Multi-Task Learning of Multi-Level Transition Dynamics for Session-based Recommendation

arXiv.org Artificial Intelligence

Session-based recommendation plays a central role in a wide spectrum of online applications, ranging from e-commerce to online advertising services. However, the majority of existing session-based recommendation techniques (e.g., attention-based recurrent network or graph neural network) are not well-designed for capturing the complex transition dynamics exhibited with temporally-ordered and multi-level inter-dependent relation structures. These methods largely overlook the relation hierarchy of item transitional patterns. In this paper, we propose a multi-task learning framework with Multi-level Transition Dynamics (MTD), which enables the jointly learning of intra- and inter-session item transition dynamics in automatic and hierarchical manner. Towards this end, we first develop a position-aware attention mechanism to learn item transitional regularities within individual session. Then, a graph-structured hierarchical relation encoder is proposed to explicitly capture the cross-session item transitions in the form of high-order connectivities by performing embedding propagation with the global graph context. The learning process of intra- and inter-session transition dynamics are integrated, to preserve the underlying low- and high-level item relationships in a common latent space. Extensive experiments on three real-world datasets demonstrate the superiority of MTD as compared to state-of-the-art baselines.


CA-RNN: Using Context-Aligned Recurrent Neural Networks for Modeling Sentence Similarity

AAAI Conferences

The recurrent neural networks (RNNs) have shown good performance for sentence similarity modeling in recent years. Most RNNs focus on modeling the hidden states based on the current sentence, while the context information from the other sentence is not well investigated during the hidden state generation. In this paper, we propose a context-aligned RNN (CA-RNN) model, which incorporates the contextual information of the aligned words in a sentence pair for the inner hidden state generation. Specifically, we first perform word alignment detection to identify the aligned words in the two sentences. Then, we present a context alignment gating mechanism and embed it into our model to automatically absorb the aligned words' context for the hidden state update. Experiments on three benchmark datasets, namely TREC-QA and WikiQA for answer selection and MSRP for paraphrase identification, show the great advantages of our proposed model. In particular, we achieve the new state-of-the-art performance on TREC-QA and WikiQA. Furthermore, our model is comparable to if not better than the recent neural network based approaches on MSRP.