Goto

Collaborating Authors

 Huang, Hui


Enabling Inclusive Systematic Reviews: Incorporating Preprint Articles with Large Language Model-Driven Evaluations

arXiv.org Artificial Intelligence

Background. Systematic reviews in comparative effectiveness research require timely evidence synthesis. Preprints accelerate knowledge dissemination but vary in quality, posing challenges for systematic reviews. Methods. We propose AutoConfidence (automated confidence assessment), an advanced framework for predicting preprint publication, which reduces reliance on manual curation and expands the range of predictors, including three key advancements: (1) automated data extraction using natural language processing techniques, (2) semantic embeddings of titles and abstracts, and (3) large language model (LLM)-driven evaluation scores. Additionally, we employed two prediction models: a random forest classifier for binary outcome and a survival cure model that predicts both binary outcome and publication risk over time. Results. The random forest classifier achieved AUROC 0.692 with LLM-driven scores, improving to 0.733 with semantic embeddings and 0.747 with article usage metrics. The survival cure model reached AUROC 0.716 with LLM-driven scores, improving to 0.731 with semantic embeddings. For publication risk prediction, it achieved a concordance index of 0.658, increasing to 0.667 with semantic embeddings. Conclusion. Our study advances the framework for preprint publication prediction through automated data extraction and multiple feature integration. By combining semantic embeddings with LLM-driven evaluations, AutoConfidence enhances predictive performance while reducing manual annotation burden. The framework has the potential to facilitate systematic incorporation of preprint articles in evidence-based medicine, supporting researchers in more effective evaluation and utilization of preprint resources.


AIR: Complex Instruction Generation via Automatic Iterative Refinement

arXiv.org Artificial Intelligence

With the development of large language models, their ability to follow simple instructions has significantly improved. However, adhering to complex instructions remains a major challenge. Current approaches to generating complex instructions are often irrelevant to the current instruction requirements or suffer from limited scalability and diversity. Moreover, methods such as back-translation, while effective for simple instruction generation, fail to leverage the rich contents and structures in large web corpora. In this paper, we propose a novel automatic iterative refinement framework to generate complex instructions with constraints, which not only better reflects the requirements of real scenarios but also significantly enhances LLMs' ability to follow complex instructions. The AIR framework consists of two stages: (1)Generate an initial instruction from a document; (2)Iteratively refine instructions with LLM-as-judge guidance by comparing the model's output with the document to incorporate valuable constraints. Finally, we construct the AIR-10K dataset with 10K complex instructions and demonstrate that instructions generated with our approach significantly improve the model's ability to follow complex instructions, outperforming existing methods for instruction generation.


MuSC: Improving Complex Instruction Following with Multi-granularity Self-Contrastive Training

arXiv.org Artificial Intelligence

Complex instruction-following with elaborate constraints is imperative for Large Language Models (LLMs). While existing methods have constructed data for complex instruction alignment, they all rely on a more advanced model, especially GPT-4, limiting their application. In this paper, we propose a Multi-granularity Self-Contrastive Training (MuSC) framework, to improve the complex instruction alignment without relying on a stronger model. Our method is conducted on both coarse and fine granularity. On coarse-granularity, we construct constraint-aware preference data based on instruction decomposition and recombination. On fine-granularity, we perform token-aware preference optimization with dynamic token-level supervision. Our method is evaluated on open-sourced models, and experiment results show our method achieves significant improvement on both complex and general instruction-following benchmarks, surpassing previous self-alignment methods.


A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma

arXiv.org Artificial Intelligence

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related mortality worldwide, with early detection being crucial for improving patient survival rates. However, early screening for HCC using ultrasound suffers from insufficient sensitivity and is highly dependent on the expertise of radiologists for interpretation. Leveraging the latest advancements in artificial intelligence (AI) in medical imaging, this study proposes an innovative Hierarchical Sparse Query Transformer (HSQformer) model that combines the strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance the accuracy of HCC diagnosis in ultrasound screening. The HSQformer leverages sparse latent space representations to capture hierarchical details at various granularities without the need for complex adjustments, and adopts a modular, plug-and-play design philosophy, ensuring the model's versatility and ease of use. The HSQformer's performance was rigorously tested across three distinct clinical scenarios: single-center, multi-center, and high-risk patient testing. In each of these settings, it consistently outperformed existing state-of-the-art models, such as ConvNext and SwinTransformer. Notably, the HSQformer even matched the diagnostic capabilities of senior radiologists and comprehensively surpassed those of junior radiologists. The experimental results from this study strongly demonstrate the effectiveness and clinical potential of AI-assisted tools in HCC screening. The full code is available at https://github.com/Asunatan/HSQformer.


Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models

arXiv.org Artificial Intelligence

New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.


2D-DPO: Scaling Direct Preference Optimization with 2-Dimensional Supervision

arXiv.org Artificial Intelligence

Recent advancements in Direct Preference Optimization (DPO) have significantly enhanced the alignment of Large Language Models (LLMs) with human preferences, owing to its simplicity and effectiveness. However, existing methods typically optimize a scalar score or ranking reward, thereby overlooking the multi-dimensional nature of human preferences. In this work, we propose to extend the preference of DPO to two dimensions: segments and aspects. We first introduce a 2D supervision dataset called HelpSteer-2D. For the segment dimension, we divide the response into sentences and assign scores to each segment. For the aspect dimension, we meticulously design several criteria covering the response quality rubrics. With the 2-dimensional signals as feedback, we develop a 2D-DPO framework, decomposing the overall objective into multi-segment and multi-aspect objectives. Extensive experiments on popular benchmarks demonstrate that 2D-DPO performs better than methods that optimize for scalar or 1-dimensional preferences.


Mitigating the Bias of Large Language Model Evaluation

arXiv.org Artificial Intelligence

Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.


On the Limitations of Fine-tuned Judge Models for LLM Evaluation

arXiv.org Artificial Intelligence

Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT-4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. While the fine-tuned judge models are claimed to achieve comparable evaluation capability with GPT-4, in this study, we conduct an empirical study of judge models. Our findings indicate that although the fine-tuned judge models achieve high performance on in-domain test sets, even surpassing GPT-4, they underperform GPT-4 across several dimensions, including generalizability, fairness, aspect-specific evaluation, and scalability. We also reveal that the fine-tuned judge model inherently operates as a task-specific classifier, consequently imposing the limitations. Finally, we propose an effective indicator to measure the reliability of fine-tuned judges, with the aim of maximizing their utility in LLM evaluation.


Spatial and Surface Correspondence Field for Interaction Transfer

arXiv.org Artificial Intelligence

In this paper, we introduce a new method for the task of interaction transfer. Given an example interaction between a source object and an agent, our method can automatically infer both surface and spatial relationships for the agent and target objects within the same category, yielding more accurate and valid transfers. Specifically, our method characterizes the example interaction using a combined spatial and surface representation. We correspond the agent points and object points related to the representation to the target object space using a learned spatial and surface correspondence field, which represents objects as deformed and rotated signed distance fields. With the corresponded points, an optimization is performed under the constraints of our spatial and surface interaction representation and additional regularization. Experiments conducted on human-chair and hand-mug interaction transfer tasks show that our approach can handle larger geometry and topology variations between source and target shapes, significantly outperforming state-of-the-art methods.


Prior-agnostic Multi-scale Contrastive Text-Audio Pre-training for Parallelized TTS Frontend Modeling

arXiv.org Artificial Intelligence

Over the past decade, a series of unflagging efforts have been dedicated to developing highly expressive and controllable text-to-speech (TTS) systems. In general, the holistic TTS comprises two interconnected components: the frontend module and the backend module. The frontend excels in capturing linguistic representations from the raw text input, while the backend module converts linguistic cues to speech. The research community has shown growing interest in the study of the frontend component, recognizing its pivotal role in text-to-speech systems, including Text Normalization (TN), Prosody Boundary Prediction (PBP), and Polyphone Disambiguation (PD). Nonetheless, the limitations posed by insufficient annotated textual data and the reliance on homogeneous text signals significantly undermine the effectiveness of its supervised learning. To evade this obstacle, a novel two-stage TTS frontend prediction pipeline, named TAP-FM, is proposed in this paper. Specifically, during the first learning phase, we present a Multi-scale Contrastive Text-audio Pre-training protocol (MC-TAP), which hammers at acquiring richer insights via multi-granularity contrastive pre-training in an unsupervised manner. Instead of mining homogeneous features in prior pre-training approaches, our framework demonstrates the ability to delve deep into both global and local text-audio semantic and acoustic representations. Furthermore, a parallelized TTS frontend model is delicately devised to execute TN, PD, and PBP prediction tasks, respectively in the second stage. Finally, extensive experiments illustrate the superiority of our proposed method, achieving state-of-the-art performance.