Huang, Haojian
Temporal Regularization Makes Your Video Generator Stronger
Chen, Harold Haodong, Huang, Haojian, Wu, Xianfeng, Liu, Yexin, Bai, Yajing, Shu, Wen-Jie, Yang, Harry, Lim, Ser-Nam
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
Du, Junjia, Liu, Yadi, Guo, Hongcheng, Wang, Jiawei, Huang, Haojian, Ni, Yunyi, Li, Zhoujun
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
VideoGen-of-Thought: A Collaborative Framework for Multi-Shot Video Generation
Zheng, Mingzhe, Xu, Yongqi, Huang, Haojian, Ma, Xuran, Liu, Yexin, Shu, Wenjie, Pang, Yatian, Tang, Feilong, Chen, Qifeng, Yang, Harry, Lim, Ser-Nam
Current video generation models excel at generating short clips but still struggle with creating multi-shot, movie-like videos. Existing models trained on large-scale data on the back of rich computational resources are unsurprisingly inadequate for maintaining a logical storyline and visual consistency across multiple shots of a cohesive script since they are often trained with a single-shot objective. To this end, we propose VideoGen-of-Thought (VGoT), a collaborative and training-free architecture designed specifically for multi-shot video generation. VGoT is designed with three goals in mind as follows. Multi-Shot Video Generation: We divide the video generation process into a structured, modular sequence, including (1) Script Generation, which translates a curt story into detailed prompts for each shot; (2) Keyframe Generation, responsible for creating visually consistent keyframes faithful to character portrayals; and (3) Shot-Level Video Generation, which transforms information from scripts and keyframes into shots; (4) Smoothing Mechanism that ensures a consistent multi-shot output. Reasonable Narrative Design: Inspired by cinematic scriptwriting, our prompt generation approach spans five key domains, ensuring logical consistency, character development, and narrative flow across the entire video. Cross-Shot Consistency: We ensure temporal and identity consistency by leveraging identity-preserving (IP) embeddings across shots, which are automatically created from the narrative. Additionally, we incorporate a cross-shot smoothing mechanism, which integrates a reset boundary that effectively combines latent features from adjacent shots, resulting in smooth transitions and maintaining visual coherence throughout the video. Our experiments demonstrate that VGoT surpasses existing video generation methods in producing high-quality, coherent, multi-shot videos.
BoViLA: Bootstrapping Video-Language Alignment via LLM-Based Self-Questioning and Answering
Chen, Jin, Ma, Kaijing, Huang, Haojian, Shen, Jiayu, Fang, Han, Zang, Xianghao, Ban, Chao, He, Zhongjiang, Sun, Hao, Kang, Yanmei
The development of multi-modal models has been rapidly advancing, with some demonstrating remarkable capabilities. However, annotating video-text pairs remains expensive and insufficient. Take video question answering (VideoQA) tasks as an example, human annotated questions and answers often cover only part of the video, and similar semantics can also be expressed through different text forms, leading to underutilization of video. To address this, we propose BoViLA, a self-training framework that augments question samples during training through LLM-based self-questioning and answering, which help model exploit video information and the internal knowledge of LLMs more thoroughly to improve modality alignment. To filter bad self-generated questions, we introduce Evidential Deep Learning (EDL) to estimate uncertainty and assess the quality of self-generated questions by evaluating the modality alignment within the context. To the best of our knowledge, this work is the first to explore LLM-based self-training frameworks for modality alignment. We evaluate BoViLA on five strong VideoQA benchmarks, where it outperforms several state-of-the-art methods and demonstrate its effectiveness and generality. Additionally, we provide extensive analyses of the self-training framework and the EDL-based uncertainty filtering mechanism. The code will be made available at https://github.com/dunknsabsw/BoViLA.
Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Chen, Mulin, Huang, Haojian, Li, Qiang
Handling incomplete data in multi-view classification is challenging, especially when traditional imputation methods introduce biases that compromise uncertainty estimation. Existing Evidential Deep Learning (EDL) based approaches attempt to address these issues, but they often struggle with conflicting evidence due to the limitations of the Dempster-Shafer combination rule, leading to unreliable decisions. To address these challenges, we propose the Alternating Progressive Learning Network (APLN), specifically designed to enhance EDL-based methods in incomplete MVC scenarios. Our approach mitigates bias from corrupted observed data by first applying coarse imputation, followed by mapping the data to a latent space. In this latent space, we progressively learn an evidence distribution aligned with the target domain, incorporating uncertainty considerations through EDL. Additionally, we introduce a conflict-aware Dempster-Shafer combination rule (DSCR) to better handle conflicting evidence. By sampling from the learned distribution, we optimize the latent representations of missing views, reducing bias and enhancing decision-making robustness. Extensive experiments demonstrate that APLN, combined with DSCR, significantly outperforms traditional methods, particularly in environments characterized by high uncertainty and conflicting evidence, establishing it as a promising solution for incomplete multi-view classification.
Short-term wind speed forecasting model based on an attention-gated recurrent neural network and error correction strategy
Huang, Haojian
Abstract:The accurate wind speed series forecast is very pivotal to security of grid dispatching and the application of wind power. Nevertheless, on account of their nonlinear and non-stationary nature, their short-term forecast is extremely challenging. Therefore, this dissertation raises one short-term wind speed forecast pattern on the foundation of attention with an improved gated recurrent neural network (AtGRU) and a tactic of error correction. That model uses the AtGRU model as the preliminary predictor and the GRU model as the error corrector. At the beginning, singular spectrum analysis (SSA) is employed in previous wind speed series for lessening the noise. Subsequently, historical wind speed series is going to be used for the predictor training. During this process, the prediction can have certain errors. The sequence of these errors processed by variational modal decomposition (VMD) is used to train the corrector of error. The eventual forecast consequence is just the sum of predictor forecast and error corrector. The proposed SSA-AtGRU-VMD-GRU model outperforms the compared models in three case studies on Woodburn, St. Thomas, and Santa Cruz. It is indicated that the model evidently enhances the correction of the wind speed forecast.
Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network
Huang, Haojian
As an important clean and renewable kind of energy, wind power plays an important role in coping with energy crisis and environmental pollution. However, the volatility and intermittency of wind speed restrict the development of wind power. To improve the utilization of wind power, this study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU). Firstly, an adaptive data noise reduction algorithm P-SSA is proposed based on singular spectrum analysis (SSA) and Pearson correlation coefficient. The original wind speed is decomposed into multiple subsequences by SSA and then reconstructed. When the Pearson correlation coefficient between the reconstructed sequence and the original sequence is greater than 0.99, other noise subsequences are deleted to complete the data denoising. Then, the receptive field of the samples is expanded through the causal convolution and dilated convolution of TCN, and the characteristics of wind speed change are extracted. Then, the time feature information of the sequence is extracted by GRU, and then the wind speed is predicted to form the wind speed sequence prediction model of P-SSA-TCN-GRU. The proposed model was validated on three wind farms in Shandong Province. The experimental results show that the prediction performance of the proposed model is better than that of the traditional model and other models based on TCN, and the wind speed prediction of wind farms with high precision and strong stability is realized. The wind speed predictions of this model have the potential to become the data that support the operation and management of wind farms. The code is available at link.