Huang, Han
NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
Liu, Zhiyuan, Luo, Yanchen, Huang, Han, Zhang, Enzhi, Li, Sihang, Fang, Junfeng, Shi, Yaorui, Wang, Xiang, Kawaguchi, Kenji, Chua, Tat-Seng
3D molecule generation is crucial for drug discovery and material design. While prior efforts focus on 3D diffusion models for their benefits in modeling continuous 3D conformers, they overlook the advantages of 1D SELFIES-based Language Models (LMs), which can generate 100% valid molecules and leverage the billion-scale 1D molecule datasets. To combine these advantages for 3D molecule generation, we propose a foundation model -- NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation. NExT-Mol uses an extensively pretrained molecule LM for 1D molecule generation, and subsequently predicts the generated molecule's 3D conformers with a 3D diffusion model. We enhance NExT-Mol's performance by scaling up the LM's model size, refining the diffusion neural architecture, and applying 1D to 3D transfer learning. Notably, our 1D molecule LM significantly outperforms baselines in distributional similarity while ensuring validity, and our 3D diffusion model achieves leading performances in conformer prediction. Given these improvements in 1D and 3D modeling, NExT-Mol achieves a 26% relative improvement in 3D FCD for de novo 3D generation on GEOM-DRUGS, and a 13% average relative gain for conditional 3D generation on QM9-2014. Our codes and pretrained checkpoints are available at https://github.com/acharkq/NExT-Mol.
Zero-Shot NAS via the Suppression of Local Entropy Decrease
Wu, Ning, Huang, Han, Xu, Yueting, Hao, Zhifeng
Architecture performance evaluation is the most time-consuming part of neural architecture search (NAS). Zero-Shot NAS accelerates the evaluation by utilizing zero-cost proxies instead of training. Though effective, existing zero-cost proxies require invoking backpropagations or running networks on input data, making it difficult to further accelerate the computation of proxies. To alleviate this issue, architecture topologies are used to evaluate the performance of networks in this study. We prove that particular architectural topologies decrease the local entropy of feature maps, which degrades specific features to a bias, thereby reducing network performance. Based on this proof, architectural topologies are utilized to quantify the suppression of local entropy decrease (SED) as a data-free and running-free proxy. Experimental results show that SED outperforms most state-of-the-art proxies in terms of architecture selection on five benchmarks, with computation time reduced by three orders of magnitude. We further compare the SED-based NAS with state-of-the-art proxies. SED-based NAS selects the architecture with higher accuracy and fewer parameters in only one second. The theoretical analyses of local entropy and experimental results demonstrate that the suppression of local entropy decrease facilitates selecting optimal architectures in Zero-Shot NAS.
Beyond Filtering: Adaptive Image-Text Quality Enhancement for MLLM Pretraining
Huang, Han, Huo, Yuqi, Zhao, Zijia, Lu, Haoyu, Wu, Shu, Wang, Bingning, Liu, Qiang, Chen, Weipeng, Wang, Liang
Multimodal large language models (MLLMs) have made significant strides by integrating visual and textual modalities. A critical factor in training MLLMs is the quality of image-text pairs within multimodal pretraining datasets. However, $\textit {de facto}$ filter-based data quality enhancement paradigms often discard a substantial portion of high-quality image data due to inadequate semantic alignment between images and texts, leading to inefficiencies in data utilization and scalability. In this paper, we propose the Adaptive Image-Text Quality Enhancer (AITQE), a model that dynamically assesses and enhances the quality of image-text pairs. AITQE employs a text rewriting mechanism for low-quality pairs and incorporates a negative sample learning strategy to improve evaluative capabilities by integrating deliberately selected low-quality samples during training. Unlike prior approaches that significantly alter text distributions, our method minimally adjusts text to preserve data volume while enhancing quality. Experimental results demonstrate that AITQE surpasses existing methods on various benchmark, effectively leveraging raw data and scaling efficiently with increasing data volumes. We hope our work will inspire future works. The code and model are available at: https://github.com/hanhuang22/AITQE.
Exploring the Design Space of Visual Context Representation in Video MLLMs
Du, Yifan, Huo, Yuqi, Zhou, Kun, Zhao, Zijia, Lu, Haoyu, Huang, Han, Zhao, Wayne Xin, Wang, Bingning, Chen, Weipeng, Wen, Ji-Rong
Video Multimodal Large Language Models (MLLMs) have shown remarkable capability of understanding the video semantics on various downstream tasks. Despite the advancements, there is still a lack of systematic research on visual context representation, which refers to the scheme to select frames from a video and further select the tokens from a frame. In this paper, we explore the design space for visual context representation, and aim to improve the performance of video MLLMs by finding more effective representation schemes. Firstly, we formulate the task of visual context representation as a constrained optimization problem, and model the language modeling loss as a function of the number of frames and the number of embeddings (or tokens) per frame, given the maximum visual context window size. Then, we explore the scaling effects in frame selection and token selection respectively, and fit the corresponding function curve by conducting extensive empirical experiments. We examine the effectiveness of typical selection strategies and present empirical findings to determine the two factors. Furthermore, we study the joint effect of frame selection and token selection, and derive the optimal formula for determining the two factors. We demonstrate that the derived optimal settings show alignment with the best-performed results of empirical experiments.
VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark
Huang, Han, Zhong, Haitian, Yu, Tao, Liu, Qiang, Wu, Shu, Wang, Liang, Tan, Tieniu
Recently, knowledge editing on large language models (LLMs) has received considerable attention. Compared to this, editing Large Vision-Language Models (LVLMs) faces extra challenges from diverse data modalities and complicated model components, and data for LVLMs editing are limited. The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images and cannot assess whether models apply edited knowledge in relevant content. Therefore, we employ more reliable data collection methods to construct a new Large $\textbf{V}$ision-$\textbf{L}$anguage Model $\textbf{K}$nowledge $\textbf{E}$diting $\textbf{B}$enchmark, $\textbf{VLKEB}$, and extend the Portability metric for more comprehensive evaluation. Leveraging a multi-modal knowledge graph, our image data are bound with knowledge entities. This can be further used to extract entity-related knowledge, which constitutes the base of editing data. We conduct experiments of different editing methods on five LVLMs, and thoroughly analyze how do they impact the models. The results reveal strengths and deficiencies of these methods and hopefully provide insights for future research. The codes and dataset are available at: $\href{https://github.com/VLKEB/VLKEB}{\text{https://github.com/VLKEB/VLKEB}}$.
Reconstructing the Geometry of Random Geometric Graphs
Huang, Han, Jiradilok, Pakawut, Mossel, Elchanan
Random geometric graphs are random graph models defined on metric spaces. Such a model is defined by first sampling points from a metric space and then connecting each pair of sampled points with probability that depends on their distance, independently among pairs. In this work, we show how to efficiently reconstruct the geometry of the underlying space from the sampled graph under the manifold assumption, i.e., assuming that the underlying space is a low dimensional manifold and that the connection probability is a strictly decreasing function of the Euclidean distance between the points in a given embedding of the manifold in $\mathbb{R}^N$. Our work complements a large body of work on manifold learning, where the goal is to recover a manifold from sampled points sampled in the manifold along with their (approximate) distances.
Unsupervised Solution Operator Learning for Mean-Field Games via Sampling-Invariant Parametrizations
Huang, Han, Lai, Rongjie
Recent advances in deep learning has witnessed many innovative frameworks that solve high dimensional mean-field games (MFG) accurately and efficiently. These methods, however, are restricted to solving single-instance MFG and demands extensive computational time per instance, limiting practicality. To overcome this, we develop a novel framework to learn the MFG solution operator. Our model takes a MFG instances as input and output their solutions with one forward pass. To ensure the proposed parametrization is well-suited for operator learning, we introduce and prove the notion of sampling invariance for our model, establishing its convergence to a continuous operator in the sampling limit. Our method features two key advantages. First, it is discretization-free, making it particularly suitable for learning operators of high-dimensional MFGs. Secondly, it can be trained without the need for access to supervised labels, significantly reducing the computational overhead associated with creating training datasets in existing operator learning methods. We test our framework on synthetic and realistic datasets with varying complexity and dimensionality to substantiate its robustness.
LLMR: Real-time Prompting of Interactive Worlds using Large Language Models
De La Torre, Fernanda, Fang, Cathy Mengying, Huang, Han, Banburski-Fahey, Andrzej, Fernandez, Judith Amores, Lanier, Jaron
We present Large Language Model for Mixed Reality (LLMR), a framework for the real-time creation and modification of interactive Mixed Reality experiences using LLMs. LLMR leverages novel strategies to tackle difficult cases where ideal training data is scarce, or where the design goal requires the synthesis of internal dynamics, intuitive analysis, or advanced interactivity. Our framework relies on text interaction and the Unity game engine. By incorporating techniques for scene understanding, task planning, self-debugging, and memory management, LLMR outperforms the standard GPT-4 by 4x in average error rate. We demonstrate LLMR's cross-platform interoperability with several example worlds, and evaluate it on a variety of creation and modification tasks to show that it can produce and edit diverse objects, tools, and scenes. Finally, we conducted a usability study (N=11) with a diverse set that revealed participants had positive experiences with the system and would use it again.
Real-time Animation Generation and Control on Rigged Models via Large Language Models
Huang, Han, De La Torre, Fernanda, Fang, Cathy Mengying, Banburski-Fahey, Andrzej, Amores, Judith, Lanier, Jaron
We introduce a novel method for real-time animation control and generation on rigged models using natural language input. First, we embed a large language model (LLM) in Unity to output structured texts that can be parsed into diverse and realistic animations. Second, we illustrate LLM's potential to enable flexible state transition between existing animations. We showcase the robustness of our approach through qualitative results on various rigged models and motions.
Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
Huang, Han, Sun, Leilei, Du, Bowen, Lv, Weifeng
Designing new molecules is essential for drug discovery and material science. Recently, deep generative models that aim to model molecule distribution have made promising progress in narrowing down the chemical research space and generating high-fidelity molecules. However, current generative models only focus on modeling either 2D bonding graphs or 3D geometries, which are two complementary descriptors for molecules. The lack of ability to jointly model both limits the improvement of generation quality and further downstream applications. In this paper, we propose a new joint 2D and 3D diffusion model (JODO) that generates complete molecules with atom types, formal charges, bond information, and 3D coordinates. To capture the correlation between molecular graphs and geometries in the diffusion process, we develop a Diffusion Graph Transformer to parameterize the data prediction model that recovers the original data from noisy data. The Diffusion Graph Transformer interacts node and edge representations based on our relational attention mechanism, while simultaneously propagating and updating scalar features and geometric vectors. Our model can also be extended for inverse molecular design targeting single or multiple quantum properties. In our comprehensive evaluation pipeline for unconditional joint generation, the results of the experiment show that JODO remarkably outperforms the baselines on the QM9 and GEOM-Drugs datasets. Furthermore, our model excels in few-step fast sampling, as well as in inverse molecule design and molecular graph generation. Our code is provided in https://github.com/GRAPH-0/JODO.