Huang, Haibin
CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance
Deng, Yufan, Guo, Xun, Wang, Yizhi, Fang, Jacob Zhiyuan, Wang, Angtian, Yuan, Shenghai, Yang, Yiding, Liu, Bo, Huang, Haibin, Ma, Chongyang
Video generation has witnessed remarkable progress with the advent of deep generative models, particularly diffusion models. While existing methods excel in generating high-quality videos from text prompts or single images, personalized multi-subject video generation remains a largely unexplored challenge. This task involves synthesizing videos that incorporate multiple distinct subjects, each defined by separate reference images, while ensuring temporal and spatial consistency. Current approaches primarily rely on mapping subject images to keywords in text prompts, which introduces ambiguity and limits their ability to model subject relationships effectively. In this paper, we propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM). Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort. By leveraging MLLM to interpret subject relationships, our method facilitates scalability, enabling the use of large and diverse datasets for training. Furthermore, our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation. Through extensive evaluations, we demonstrate that our approach significantly improves subject consistency, and overall video coherence, paving the way for advanced applications in storytelling, interactive media, and personalized video generation.
DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning
Guo, Xun, Zhang, Shan, He, Yongxin, Zhang, Ting, Feng, Wanquan, Huang, Haibin, Ma, Chongyang
Current techniques for detecting AI-generated text are largely confined to manual feature crafting and supervised binary classification paradigms. These methodologies typically lead to performance bottlenecks and unsatisfactory generalizability. Consequently, these methods are often inapplicable for out-of-distribution (OOD) data and newly emerged large language models (LLMs). In this paper, we revisit the task of AI-generated text detection. We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors, rather than simply classifying the text into human-written or AI-generated text. To this end, we propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework. DeTeCtive is designed to facilitate the learning of distinct writing styles, combined with a dense information retrieval pipeline for AI-generated text detection. Our method is compatible with a range of text encoders. Extensive experiments demonstrate that our method enhances the ability of various text encoders in detecting AI-generated text across multiple benchmarks and achieves state-of-the-art results. Notably, in OOD zero-shot evaluation, our method outperforms existing approaches by a large margin. Moreover, we find our method boasts a Training-Free Incremental Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy in OOD detection scenarios. We will open-source our code and models in hopes that our work will spark new thoughts in the field of AI-generated text detection, ensuring safe application of LLMs and enhancing compliance. Our code is available at https://github.com/heyongxin233/DeTeCtive.
Spatial and Surface Correspondence Field for Interaction Transfer
Huang, Zeyu, Xu, Honghao, Huang, Haibin, Ma, Chongyang, Huang, Hui, Hu, Ruizhen
In this paper, we introduce a new method for the task of interaction transfer. Given an example interaction between a source object and an agent, our method can automatically infer both surface and spatial relationships for the agent and target objects within the same category, yielding more accurate and valid transfers. Specifically, our method characterizes the example interaction using a combined spatial and surface representation. We correspond the agent points and object points related to the representation to the target object space using a learned spatial and surface correspondence field, which represents objects as deformed and rotated signed distance fields. With the corresponded points, an optimization is performed under the constraints of our spatial and surface interaction representation and additional regularization. Experiments conducted on human-chair and hand-mug interaction transfer tasks show that our approach can handle larger geometry and topology variations between source and target shapes, significantly outperforming state-of-the-art methods.
TopCoW: Benchmarking Topology-Aware Anatomical Segmentation of the Circle of Willis (CoW) for CTA and MRA
Yang, Kaiyuan, Musio, Fabio, Ma, Yihui, Juchler, Norman, Paetzold, Johannes C., Al-Maskari, Rami, Höher, Luciano, Li, Hongwei Bran, Hamamci, Ibrahim Ethem, Sekuboyina, Anjany, Shit, Suprosanna, Huang, Houjing, Waldmannstetter, Diana, Kofler, Florian, Navarro, Fernando, Menten, Martin, Ezhov, Ivan, Rueckert, Daniel, Vos, Iris, Ruigrok, Ynte, Velthuis, Birgitta, Kuijf, Hugo, Hämmerli, Julien, Wurster, Catherine, Bijlenga, Philippe, Westphal, Laura, Bisschop, Jeroen, Colombo, Elisa, Baazaoui, Hakim, Makmur, Andrew, Hallinan, James, Wiestler, Bene, Kirschke, Jan S., Wiest, Roland, Montagnon, Emmanuel, Letourneau-Guillon, Laurent, Galdran, Adrian, Galati, Francesco, Falcetta, Daniele, Zuluaga, Maria A., Lin, Chaolong, Zhao, Haoran, Zhang, Zehan, Ra, Sinyoung, Hwang, Jongyun, Park, Hyunjin, Chen, Junqiang, Wodzinski, Marek, Müller, Henning, Shi, Pengcheng, Liu, Wei, Ma, Ting, Yalçin, Cansu, Hamadache, Rachika E., Salvi, Joaquim, Llado, Xavier, Estrada, Uma Maria Lal-Trehan, Abramova, Valeriia, Giancardo, Luca, Oliver, Arnau, Liu, Jialu, Huang, Haibin, Cui, Yue, Lin, Zehang, Liu, Yusheng, Zhu, Shunzhi, Patel, Tatsat R., Tutino, Vincent M., Orouskhani, Maysam, Wang, Huayu, Mossa-Basha, Mahmud, Zhu, Chengcheng, Rokuss, Maximilian R., Kirchhoff, Yannick, Disch, Nico, Holzschuh, Julius, Isensee, Fabian, Maier-Hein, Klaus, Sato, Yuki, Hirsch, Sven, Wegener, Susanne, Menze, Bjoern
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
Semi-Weakly Supervised Object Kinematic Motion Prediction
Liu, Gengxin, Sun, Qian, Huang, Haibin, Ma, Chongyang, Guo, Yulan, Yi, Li, Huang, Hui, Hu, Ruizhen
Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters. Due to the large variations in both topological structure and geometric details of 3D objects, this remains a challenging task and the lack of large scale labeled data also constrain the performance of deep learning based approaches. In this paper, we tackle the task of object kinematic motion prediction problem in a semi-weakly supervised manner. Our key observations are two-fold. First, although 3D dataset with fully annotated motion labels is limited, there are existing datasets and methods for object part semantic segmentation at large scale. Second, semantic part segmentation and mobile part segmentation is not always consistent but it is possible to detect the mobile parts from the underlying 3D structure. Towards this end, we propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters, which are further refined based on geometric alignment. This network can be first trained on PartNet-Mobility dataset with fully labeled mobility information and then applied on PartNet dataset with fine-grained and hierarchical part-level segmentation. The network predictions yield a large scale of 3D objects with pseudo labeled mobility information and can further be used for weakly-supervised learning with pre-existing segmentation. Our experiments show there are significant performance boosts with the augmented data for previous method designed for kinematic motion prediction on 3D partial scans.