Goto

Collaborating Authors

 Huang, Edward W


Unleashing the Power of LLMs as Multi-Modal Encoders for Text and Graph-Structured Data

arXiv.org Artificial Intelligence

Graph-structured information offers rich contextual information that can enhance language models by providing structured relationships and hierarchies, leading to more expressive embeddings for various applications such as retrieval, question answering, and classification. However, existing methods for integrating graph and text embeddings, often based on Multi-layer Perceptrons (MLPs) or shallow transformers, are limited in their ability to fully exploit the heterogeneous nature of these modalities. To overcome this, we propose Janus, a simple yet effective framework that leverages Large Language Models (LLMs) to jointly encode text and graph data. Specifically, Janus employs an MLP adapter to project graph embeddings into the same space as text embeddings, allowing the LLM to process both modalities jointly. Unlike prior work, we also introduce contrastive learning to align the graph and text spaces more effectively, thereby improving the quality of learned joint embeddings. Empirical results across six datasets spanning three tasks, knowledge graph-contextualized question answering, graph-text pair classification, and retrieval, demonstrate that Janus consistently outperforms existing baselines, achieving significant improvements across multiple datasets, with gains of up to 11.4% in QA tasks. These results highlight Janus's effectiveness in integrating graph and text data. Ablation studies further validate the effectiveness of our method.


An Interpretable Ensemble of Graph and Language Models for Improving Search Relevance in E-Commerce

arXiv.org Artificial Intelligence

The problem of search relevance in the E-commerce domain is a challenging one since it involves understanding the intent of a user's short nuanced query and matching it with the appropriate products in the catalog. This problem has traditionally been addressed using language models (LMs) and graph neural networks (GNNs) to capture semantic and inter-product behavior signals, respectively. However, the rapid development of new architectures has created a gap between research and the practical adoption of these techniques. Evaluating the generalizability of these models for deployment requires extensive experimentation on complex, real-world datasets, which can be non-trivial and expensive. Furthermore, such models often operate on latent space representations that are incomprehensible to humans, making it difficult to evaluate and compare the effectiveness of different models. This lack of interpretability hinders the development and adoption of new techniques in the field. To bridge this gap, we propose Plug and Play Graph LAnguage Model (PP-GLAM), an explainable ensemble of plug and play models. Our approach uses a modular framework with uniform data processing pipelines. It employs additive explanation metrics to independently decide whether to include (i) language model candidates, (ii) GNN model candidates, and (iii) inter-product behavioral signals. For the task of search relevance, we show that PP-GLAM outperforms several state-of-the-art baselines as well as a proprietary model on real-world multilingual, multi-regional e-commerce datasets. To promote better model comprehensibility and adoption, we also provide an analysis of the explainability and computational complexity of our model. We also provide the public codebase and provide a deployment strategy for practical implementation.


TuneUp: A Simple Improved Training Strategy for Graph Neural Networks

arXiv.org Artificial Intelligence

Despite recent advances in Graph Neural Networks (GNNs), their training strategies remain largely under-explored. The conventional training strategy learns over all nodes in the original graph(s) equally, which can be sub-optimal as certain nodes are often more difficult to learn than others. Here we present TuneUp, a simple curriculum-based training strategy for improving the predictive performance of GNNs. TuneUp trains a GNN in two stages. In the first stage, TuneUp applies conventional training to obtain a strong base GNN. The base GNN tends to perform well on head nodes (nodes with large degrees) but less so on tail nodes (nodes with small degrees). Therefore, the second stage of TuneUp focuses on improving prediction on the difficult tail nodes by further training the base GNN on synthetically generated tail node data. We theoretically analyze TuneUp and show it provably improves generalization performance on tail nodes. TuneUp is simple to implement and applicable to a broad range of GNN architectures and prediction tasks. Extensive evaluation of TuneUp on five diverse GNN architectures, three types of prediction tasks, and both transductive and inductive settings shows that TuneUp significantly improves the performance of the base GNN on tail nodes, while often even improving the performance on head nodes. Altogether, TuneUp produces up to 57.6% and 92.2% relative predictive performance improvement in the transductive and the challenging inductive settings, respectively.


Communication-Free Distributed GNN Training with Vertex Cut

arXiv.org Artificial Intelligence

Training Graph Neural Networks (GNNs) on real-world graphs consisting of billions of nodes and edges is quite challenging, primarily due to the substantial memory needed to store the graph and its intermediate node and edge features, and there is a pressing need to speed up the training process. A common approach to achieve speed up is to divide the graph into many smaller subgraphs, which are then distributed across multiple GPUs in one or more machines and processed in parallel. However, existing distributed methods require frequent and substantial cross-GPU communication, leading to significant time overhead and progressively diminishing scalability. Here, we introduce CoFree-GNN, a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training. The framework utilizes a Vertex Cut partitioning, i.e., rather than partitioning the graph by cutting the edges between partitions, the Vertex Cut partitions the edges and duplicates the node information to preserve the graph structure. Furthermore, the framework maintains high model accuracy by incorporating a reweighting mechanism to handle a distorted graph distribution that arises from the duplicated nodes. We also propose a modified DropEdge technique to further speed up the training process. Using an extensive set of experiments on real-world networks, we demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.


You Only Transfer What You Share: Intersection-Induced Graph Transfer Learning for Link Prediction

arXiv.org Artificial Intelligence

Link prediction is central to many real-world applications, but its performance may be hampered when the graph of interest is sparse. To alleviate issues caused by sparsity, we investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph. The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge. We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions. We develop a framework to effectively leverage the structural prior in this setting. We first create an intersection subgraph using the shared nodes between the two graphs, then transfer knowledge from the source-enriched intersection subgraph to the full target graph. In the second step, we consider two approaches: a modified label propagation, and a multi-layer perceptron (MLP) model in a teacher-student regime. Experimental results on proprietary e-commerce datasets and open-source citation graphs show that the proposed workflow outperforms existing transfer learning baselines that do not explicitly utilize the intersection structure.