Huang, Bin
RED: Residual Estimation Diffusion for Low-Dose PET Sinogram Reconstruction
Ai, Xingyu, Huang, Bin, Chen, Fang, Shi, Liu, Li, Binxuan, Wang, Shaoyu, Liu, Qiegen
Recent advances in diffusion models have demonstrated exceptional performance in generative tasks across vari-ous fields. In positron emission tomography (PET), the reduction in tracer dose leads to information loss in sino-grams. Using diffusion models to reconstruct missing in-formation can improve imaging quality. Traditional diffu-sion models effectively use Gaussian noise for image re-constructions. However, in low-dose PET reconstruction, Gaussian noise can worsen the already sparse data by introducing artifacts and inconsistencies. To address this issue, we propose a diffusion model named residual esti-mation diffusion (RED). From the perspective of diffusion mechanism, RED uses the residual between sinograms to replace Gaussian noise in diffusion process, respectively sets the low-dose and full-dose sinograms as the starting point and endpoint of reconstruction. This mechanism helps preserve the original information in the low-dose sinogram, thereby enhancing reconstruction reliability. From the perspective of data consistency, RED introduces a drift correction strategy to reduce accumulated prediction errors during the reverse process. Calibrating the inter-mediate results of reverse iterations helps maintain the data consistency and enhances the stability of reconstruc-tion process. Experimental results show that RED effec-tively improves the quality of low-dose sinograms as well as the reconstruction results. The code is available at: https://github.com/yqx7150/RED.
VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding
Chen, Houlun, Wang, Xin, Chen, Hong, Zhang, Zeyang, Feng, Wei, Huang, Bin, Jia, Jia, Zhu, Wenwu
Existing Video Corpus Moment Retrieval (VCMR) is limited to coarse-grained understanding, which hinders precise video moment localization when given fine-grained queries. In this paper, we propose a more challenging fine-grained VCMR benchmark requiring methods to localize the best-matched moment from the corpus with other partially matched candidates. To improve the dataset construction efficiency and guarantee high-quality data annotations, we propose VERIFIED, an automatic \underline{V}id\underline{E}o-text annotation pipeline to generate captions with \underline{R}el\underline{I}able \underline{FI}n\underline{E}-grained statics and \underline{D}ynamics. Specifically, we resort to large language models (LLM) and large multimodal models (LMM) with our proposed Statics and Dynamics Enhanced Captioning modules to generate diverse fine-grained captions for each video. To filter out the inaccurate annotations caused by the LLM hallucination, we propose a Fine-Granularity Aware Noise Evaluator where we fine-tune a video foundation model with disturbed hard-negatives augmented contrastive and matching losses. With VERIFIED, we construct a more challenging fine-grained VCMR benchmark containing Charades-FIG, DiDeMo-FIG, and ActivityNet-FIG which demonstrate a high level of annotation quality. We evaluate several state-of-the-art VCMR models on the proposed dataset, revealing that there is still significant scope for fine-grained video understanding in VCMR. Code and Datasets are in \href{https://github.com/hlchen23/VERIFIED}{https://github.com/hlchen23/VERIFIED}.
Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond
Chen, Hong, Wang, Xin, Zhou, Yuwei, Huang, Bin, Zhang, Yipeng, Feng, Wei, Chen, Houlun, Zhang, Zeyang, Tang, Siao, Zhu, Wenwu
Multi-modal generative AI has received increasing attention in both academia and industry. Particularly, two dominant families of techniques are: i) The multi-modal large language model (MLLM) such as GPT-4V, which shows impressive ability for multi-modal understanding; ii) The diffusion model such as Sora, which exhibits remarkable multi-modal powers, especially with respect to visual generation. As such, one natural question arises: Is it possible to have a unified model for both understanding and generation? To answer this question, in this paper, we first provide a detailed review of both MLLM and diffusion models, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video large language models as well as text-to-image/video generation. Then, we discuss the two important questions on the unified model: i) whether the unified model should adopt the auto-regressive or diffusion probabilistic modeling, and ii) whether the model should utilize a dense architecture or the Mixture of Experts(MoE) architectures to better support generation and understanding, two objectives. We further provide several possible strategies for building a unified model and analyze their potential advantages and disadvantages. We also summarize existing large-scale multi-modal datasets for better model pretraining in the future. To conclude the paper, we present several challenging future directions, which we believe can contribute to the ongoing advancement of multi-modal generative AI.
A Large Medical Model based on Visual Physiological Monitoring for Public Health
Huang, Bin, Zhao, Changchen, Liu, Zimeng, Hong, Shenda, Zhang, Baochang, Wang, Wenjin, Liu, Hui
The widespread outbreak of the COVID-19 pandemic has sounded a warning about the globalization challenges in public health. In this context, the establishment of large-scale public health datasets, of medical models, and of decision-making systems with a human-centric approach holds strategic significance. Recently, groundbreaking advancements have emerged in AI methods for physiological signal monitoring and disease diagnosis based on camera sensors. These approaches, requiring no specialized medical equipment, offer convenient manners of collecting large-scale medical data in response to public health events. Not only do these methods facilitate the acquisition of unbiased datasets, but also enable the development of fair large medical models (LMMs). Therefore, we outline a prospective framework and heuristic vision for a public health large medical model (PHLMM) utilizing visual-based physiological monitoring (VBPM) technology. The PHLMM can be considered as a "convenient and universal" framework for public health, advancing the United Nations' "Sustainable Development Goals 2030", particularly in its promotion of Universal Health Coverage (UHC) in low- and middle-income countries. Furthermore, this paper provides an outlook on the crucial application prospects of PHLMM in response to public health challenges and its significant role in the field of AI for medicine (AI4medicine). In summary, PHLMM serves as a solution for constructing a large-scale medical database and LMM, eliminating the issue of dataset bias and unfairness in AI models. The outcomes will contribute to the establishment of an LMM framework for public health, acting as a crucial bridge for advancing AI4medicine.
GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing
Lu, Hao, Niu, Xuesong, Wang, Jiyao, Wang, Yin, Hu, Qingyong, Tang, Jiaqi, Zhang, Yuting, Yuan, Kaishen, Huang, Bin, Yu, Zitong, He, Dengbo, Deng, Shuiguang, Chen, Hao, Chen, Yingcong, Shan, Shiguang
Multimodal large language models (MLLMs) are designed to process and integrate information from multiple sources, such as text, speech, images, and videos. Despite its success in language understanding, it is critical to evaluate the performance of downstream tasks for better human-centric applications. This paper assesses the application of MLLMs with 5 crucial abilities for affective computing, spanning from visual affective tasks and reasoning tasks. The results show that \gpt has high accuracy in facial action unit recognition and micro-expression detection while its general facial expression recognition performance is not accurate. We also highlight the challenges of achieving fine-grained micro-expression recognition and the potential for further study and demonstrate the versatility and potential of \gpt for handling advanced tasks in emotion recognition and related fields by integrating with task-related agents for more complex tasks, such as heart rate estimation through signal processing. In conclusion, this paper provides valuable insights into the potential applications and challenges of MLLMs in human-centric computing. Our interesting examples are at https://github.com/EnVision-Research/GPT4Affectivity.
Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach
Liu, Shun, Wu, Kexin, Jiang, Chufeng, Huang, Bin, Ma, Danqing
In the realm of cryptocurrency, the prediction of Bitcoin prices has garnered substantial attention due to its potential impact on financial markets and investment strategies. This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability. Specifically, linear regression(OLS, LASSO), long-short term memory(LSTM), decision tree regressors are introduced. Through the grounded experiments, we observe linear regressor achieves the best performance among candidate models. For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting. We believe this work may derive more attention and inspire more researches in the realm of time-series analysis and its realistic applications.
Mask Hierarchical Features For Self-Supervised Learning
Liu, Fenggang, Li, Yangguang, Liang, Feng, Xu, Jilan, Huang, Bin, Shao, Jing
This paper shows that Masking the Deep hierarchical features is an efficient self-supervised method, denoted as MaskDeep. MaskDeep treats each patch in the representation space as an independent instance. We mask part of patches in the representation space and then utilize sparse visible patches to reconstruct high semantic image representation. The intuition of MaskDeep lies in the fact that models can reason from sparse visible patches semantic to the global semantic of the image. We further propose three designs in our framework: 1) a Hierarchical Deep-Masking module to concern the hierarchical property of patch representations, 2) a multi-group strategy to improve the efficiency without any extra computing consumption of the encoder and 3) a multi-target strategy to provide more description of the global semantic. Our MaskDeep brings decent improvements. Trained on ResNet50 with 200 epochs, MaskDeep achieves state-of-the-art results of 71.2% Top1 accuracy linear classification on ImageNet. On COCO object detection tasks, MaskDeep outperforms the self-supervised method SoCo, which specifically designed for object detection. When trained with 100 epochs, MaskDeep achieves 69.6% Top1 accuracy, which surpasses current methods trained with 200 epochs, such as HCSC, by 0.4% .
GraphTheta: A Distributed Graph Neural Network Learning System With Flexible Training Strategy
Liu, Yongchao, Li, Houyi, Zhang, Guowei, Zeng, Xintan, Li, Yongyong, Huang, Bin, Zhang, Peng, Li, Zhao, Zhu, Xiaowei, He, Changhua, Chen, Wenguang
Graph neural networks (GNNs) have been demonstrated as a powerful tool for analyzing non-Euclidean graph data. However, the lack of efficient distributed graph learning systems severely hinders applications of GNNs, especially when graphs are big and GNNs are relatively deep. Herein, we present GraphTheta, the first distributed and scalable graph learning system built upon vertex-centric distributed graph processing with neural network operators implemented as user-defined functions. This system supports multiple training strategies and enables efficient and scalable big-graph learning on distributed (virtual) machines with low memory. To facilitate graph convolutions, GraphTheta puts forward a new graph learning abstraction named NN-TGAR to bridge the gap between graph processing and graph deep learning. A distributed graph engine is proposed to conduct the stochastic gradient descent optimization with a hybrid-parallel execution, and a new cluster-batched training strategy is supported. We evaluate GraphTheta using several datasets with network sizes ranging from small-, modest- to large-scale. Experimental results show that GraphTheta can scale well to 1,024 workers for training an in-house developed GNN on an industry-scale Alipay dataset of 1.4 billion nodes and 4.1 billion attributed edges, with a cluster of CPU virtual machines (dockers) of small memory each (5$\sim$12GB). Moreover, GraphTheta can outperform DistDGL by up to $2.02\times$, with better scalability, and GraphLearn by up to $30.56\times$. As for model accuracy, GraphTheta is capable of learning as good GNNs as existing frameworks. To the best of our knowledge, this work presents the largest edge-attributed GNN learning task in the literature.
Computational prediction of RNA tertiary structures using machine learning methods
Huang, Bin, Du, Yuanyang, Zhang, Shuai, Li, Wenfei, Wang, Jun, Zhang, Jian
RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field. Introduction RNAs are macromolecules of crucial and versatile biological functions. To fully understand their functions, knowledge of the three-dimensional (3D) structures is essential. Since experimental approaches to determinate RNA 3D structures are difficult and expensive, many computational approaches have been developed to this purpose. To date, although template-based and homology-modeling methods could achieve high accuracies, de novo predictions still depends on the size and complexity of the RNA, and further improvement in predicting non-canonical interactions are required, according to the recent RNA-Puzzles round III. For a comprehensive study of the recent work, we refer readers to the relevant literature.